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1. REPRESENTATION THEOREMSWe will be using the notion of “linear functionals" throughout. These are simply linear mappingof from a vector space to the real numbers. More precisely, Let X be a vector space. A linearfunctional on X is a linear mapping Λ : X → RIf Λ(xn)→ Λ(x) whenever xn → x we say that Λ is a continuous linear functional on X.

Example 1. Integration is a linear functional. To see this, Let X = C([a, b]). Then Λ(f ) = ∫ ba f (x)dsis a linear functional on X

Theorem 1.1. Let F be a bounded linear functional on H . Then there exists an unique element
x0 ∈ H such that for all x ∈ H , F (x) = (x, x0), and in fact ‖F‖ = ‖x0‖.2. WEAK DERIVATIVESThe notion of weak or distributional derivatives forms the basis of PDE theory. In essence,the theory allows one to ignore some of the more “problematic points” from classical differentialcalculus. For instance, take the function f : [0, 2]→ R defined by

f (x) := {x, if x ∈ [0, 1]1, if x ∈ [1, 2]This has the problem of “cusp” where we fail to define a tangent line. However, if we were ableto “ignore” the point at 0, then we might want to say that in some sense
f ′(x) := {1, if x ∈ [0, 1]0, if x ∈ [1, 2]This is how the weak derivative comes into play.
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Let build upon our intuition into this subject. Let us start with the 1D case. Let u, v : [0, 1]→ Rbe two differential function. Let v(0), v(1). Then, integration by parts tell us that∫ 1
0 u(x)v ′(x)dx = −∫ 1

0 u′(x)v(x)dx
since the boundary term of u(x)v(x) disappears. Even if u is not differentiable we might be ableto make sense of the above formula.
Definition 2.1. Let u : [0, 1] → R be any real-valued function. We say that w : [0, 1] → R is theweak derivative of u if for every differentiable function v : [0, 1] → R with v(0) = v(1) = 0, onehas that ∫ 1

0 u(x)v ′(x)dx = −∫ 1
0 w(x)v(x)dx

To define the n-dimensional weak derivative, we need to do more work.Suppose Ω is an open and connected region in Rn . That is, for φ ∈ C∞0 (Ω), the support of
φ defined by spt(φ) := {x ∈ Ω : φ(x) 6= 0} is compact in Ω. We will refer the space as our “testfunction” space, denoted as D(R) which as discussed earlier.Let α := {α1, · · · , αn} ∈ Zn≥0 be multi-index. Then, for any φ ∈ C∞(Rn), one defines thedifferential operator Dα by

Dα := ∂α1
∂xα11 · · ·

∂αn
∂xαnnWe are now can define the multidimensional weak derivative.

Definition 2.2. Suppose u : Ω→ R is given. Then, we say that v : Ω→ R is the α−weak derivativeof u for some multi-index α, if for each φ ∈ C∞0 (Ω), the following integration by part formulaholds: ∫
Ω u(x)Dαv(x)dx = (−1)|α| ∫Ω v(x)φ(x)dx

where |α| = |α1|+ · · ·+ |αn|
3. DISTRIBUTION THEORYThe theory of Generalized functions was discovered by Laurent Schwartz in the attempt ofseeking convolution operators on the space of test functions, as continuous linear functionalson space C∞0 (Ω). This free differential calculus from certain difficulties due to the existence ofnondifferentiable functions. This is accomplished by extending nondifferentiable functions to aclass objects (called distributions or generalised functions) which is much larger than the classof differentiable functions to which usual calculus applies.

3.1. The space D of test functions. Distributions are operators map from a certain space offunctions to the field of real or complex numbers. To this end, several function spaces can bedefined. Here we start with the space of test functions D(Ω). Let Ω ⊂ Rn .
Definition 3.1. Let D(Ω) = C∞0 (Ω) be the class of all infinitely differentiable functions withcompact support in Ω: sptφ ⊂ Ω. The element of D(Ω) are called test functions.2



3.2. The space of D′ of Distributions. Let D(Ω) be the space of functions on R taking realvalues are infinitely differentiable and are 0 outside a bounded set (notation: C∞0 (Ω)). One canput seminorm on D(Ω).
‖φ‖N = supΩ {|Dαφ(x)| : x ∈ Ω, |α| ≤ N} (3.1)

A (Schwartz) distribution T : D(Ω) → R (or T : D(Ω) → C) is a continuous linear functional andthere exists c ≥ 0, n ≥ 0, N ≥ 1 so that for all φ ∈ D(Ω)
|T(φ)| ≤ c‖φ‖N (3.2)

Example 2 (Dirac Distribution T = δ). Let φ be a test function in Rn . Each x ∈ Ω determines alinear functional δx on D(Ω) by the formula
δx(φ) = φ(x)The functional δ : D(Ω)→ C is given by

δ(φ) = φ(0) φ ∈ D(Ω) (3.3)is linear on φ.It is straightforward to check that the dirac delta function is linear, that is,
〈δ, aφ1 + bφ2〉 = aφ(0) + bφ(0) = a〈δ, φ〉+ b〈δ, φ〉 (3.4)Moreover,

|δ(φ)| ≤ sup
|x|≤1 |φ(x)| = ‖φ‖ (3.5)

One might also think of distribution as coming from integration against a measure (By thefamous Riesz representation theorem). The standard notation for the Dirac measure δx
Theorem 3.2 (L. Schwartz). There is a topology on D(Ω) which makes it into a locally convex
topological vector space, and such thatD′(Ω) is precisely the set of continuous linear functionals
on D(Ω). D is complete in this topology but not metrizable.3.3. Calculus on Distributions. We have so far presented some examples of distributions. Oneof the convenient features of distributions is that we can do calculus with them.
Functions and measures as distributions.

Example 3. Let L1loc be the space of all measurable function on Ω so that for any compact subset
K ⊆ Ω ∫

K |f (t)dt <∞. Define
Tf (φ) = ∫Ω φ(t)f (t)dt, φ ∈ D(Ω) (3.6)

Since
|Tf (φ)|

≤
∫
K
|f (t)| |φ(t)|dt

≤
(∫

K
|f |
)
· ‖φ‖0 φ ∈ DK

Equation (3.2) shows that Tf ∈ D′(Ω).
Example 4. Now let Lp(R), p ≥ 1 be the space of Lebesgue measurable function f on Ω so that∫
R |f (t)|p dt <∞. If f ∈ Lp(Ω) 3



Proof.

‖f‖p = (∫
R
|f (t)|p dt)1/p

The mapping f → ‖f‖p defines a norm on Lp(Ω) and this space is complete, it is a Banach space.Further as
Lp(Ω) ⊂ L1loc(Ω)for each p ≥ 1, Tf is a well defined element of D′(R). In fact, if f ∈ Lp(R) and p > 1∫

K
|f (t)|dt

≤
(∫

K
|f (t)|p)1/p (∫

K
1q)1/q

≤ |K|
1
q ‖f‖p <∞where |K| is the Lebesgue measure of K, which is finite and we used1

p + 1
q = 1

�

Example 5. If f , g ∈ L1(Ω), then h = f ∗ g ∈ L1(Ω).
Proof. We use

h(t) = ∫Ω f (t − s)g(s)ds
and so

|h(t)| ≤ ∫
R
|f (t − s)||g(s)|ds

and ∫
Ω |h(t)|dt ≤ ∫

Ω
(∫

Ω |f (t − s)||g(s)|ds)dt
= ∫

Ω
(∫

Ω |f (t − s)||g(s)|dt)ds
using Fubini theorem with non negative integrands

= ∫
Ω |g(s)|(∫Ω |f (t ′)|dt ′

)
ds

= ‖g‖1‖f‖1So we can define
〈f ∗ g, φ〉 = 〈h, φ〉as h ∈ L1. (Note, we sometimes write 〈f , φ〉 ≡ Tf (φ) ) In fact, regarding f , g as elements of D′(R)(f ,g are Tf , Tg )

〈f ∗ g, φ〉 = ∫Ω
∫

Ω f (t)g(s)φ(s + t)dt ds
4



defineds a evaluation map1and it defines a distribution ∈ D(R) becomes
|〈f ∗ g, φ〉|

≤
∫
R

∫
R
|f (t)||g(s)||φ(s + t)|dt ds

≤
(∫

R

∫
R
|f (t)||g(s)|dt ds) ‖φ‖0= ‖f‖1‖g‖1‖φ‖0So C = ‖f‖1‖g‖1 holds for any compact set K for which spt(φ) ⊆ K.
φ → 〈f ∗ g, φ〉and it defines a distribution ∈ D(R) becomes

|〈f ∗ g, φ〉|

≤
∫
R

∫
R
|f (t)||g(s)||φ(s + t)|dt ds

≤
(∫

R

∫
R
|f (t)||g(s)|dt ds) ‖φ‖0= ‖f‖1‖g‖1‖φ‖0So C = ‖f‖1‖g‖1 holds for any compact set K for which spt(φ) ⊆ K. �

Similarly, if µ is a Borel measure on Ω, or if µ is a positive measure on Ω with µ(K) <∞ forevery compact set K ⊂ Ω, the equation
Λµ(φ) = ∫Ω φ dµ φ ∈ D(Ω) (3.7)

defines a definition Λµ in Ω, which is usually identified with µ.Let Tf be defined as (3.6), where f is locally integrable. Let α be a multi-index. We define the
α-th derivative of Tf by (DαTf )(φ) = (−1)αTf (Dαφ) φ ∈ D(Ω) (3.8)defines a linear functional DαT on D(Ω). If

|Tφ| ≤ C‖φ‖Nfor all φ ∈ DK , then
|(DαTf )φ| ≤ |TfDαφ| ≤ C‖Dαφ‖0C‖φ‖|α|Why (3.8) is the natural way to define DαTf . Roughly speaking it follows from the integration byparts formula. Nevertheless, let us give some intuition. Suppose f and g are two differentiablefunctions, then ∫

K
f ′g = −∫

K
fg ′ (3.9)

1In functional analysis, this is exf = f (x) 5



assuming g has compact support contained in K. Perhaps it is easier to think of the one dimen-sional case. We know ∫ b

a
f ′(x)g(x)dx = [f (x)g(x)]ba − ∫ b

a
f (x)g ′(x)dx (3.10)

However, if f and g both hit zero at x = a and x = b, then we obtain∫ b

a
f ′(x)g(x)dx = −∫ b

a
f (x)g ′(x)dx

This is the same as (3.9). The idea here if that, if f and g are zero on the boundary of the regionof integration, which is exactly what happens in this case where they have compact support, thenthe first term on the right hand side of (3.10) will equal zero. This explains (3.9).In general if we integrate by parts |α| times, we will have∫
K
(Dαf )g = (−1)α ∫

K
fDαg

Why does this matter? Notice that the function f which defines our distribution Tf is simply anylocally integrable function. We never claimed that it was differentiable. But rather say that it is
|α| times differentiable.What we want to do is to define the derivative of the distribution Tf . Since Tf (φ) = ∫

fφ weought to define the derivative of Tf , that is DαTf based on the rule
DαTfφ = ∫ (Dαf )φ

The problem is that Dαf may not exist, since we have not assumed that f is differentiable. But,
Dαφ always exists, since the test function is infinite differentiable (φ ∈ C∞). The integration byparts formula tells us that if Dαf exists and φ has compact support, then∫

K
(Dαf )φ(x)dx = (−1)|α| ∫

K
fDαφ dx (3.11)

Hence it is logical to define the derivative of a distribution Tf according to the rule(DαTf )(φ) = (−1)|α|Tf (Dαφ)Now define L1loc to be the space of locally integrable functions in Ω so that for any compact subset
K ⊆ Ω, ∫K |f (t)dt <∞.We know that if f ∈ L1loc(Ω), then Tf is a distribution, and its derivative is defined by (3.8). Itis natural to extend the definition to a more general distribution. For any general distribution
T ∈ D′ one defines (DαT)(φ) = (−1)|α|T(Dαφ)
3.4. Applications. For concreteness, Let α = 1. There are three types of Distributions one mayconcern with. Namely,(i) D′(R) test space D(R) = C∞0 (R).(ii) S′(R) test space S(R)(iii) E′(R) test space E(R) = C∞(R).Here we stick with (i) in the list. For those who are interested in working with Fourier Transform,use (ii). For Laplace transform, use (iii) but replace R with R+.From our earlier discussion we know that Λ ∈ D′(R) if

• Λ is linear on D(R) 6



• For any compact subset K of R, there is a constant c > 0 and integer N ≥ 0 so that when
φ ∈ D(R) with spt(φ) ⊂ K,

|Λ(φ)| ≤ C‖φ‖N (3.12)Now we need some definitions.
• L1(R). We say that f ∈ L1(R) if f is Lebesque measurable and

‖f‖1 = ∫
R
|f (x)|dx <∞

• For p ≥ 1, Lp(R). We say that f ∈ Lp(R) if f is Lebesgue measurable on R and
‖f‖p = (∫

R
|f (x)|p dx)1/p

<∞

• If p = ∞, L∞(R) are the essentially bounded functions on R. We say that f ∈ L∞(R) ifthere is M > 0 so that the Lebesgue measure of the set
{x ∈ R|f (x) > M}is zero.

• L1loc(R). We say that f ∈ L1loc(R) if f is Lebesgue measurable and for each compact subset
K of R ∫

K
|f (x)|dx <∞

Remark. For 1 ≤ p ≤ ∞, Lp(R) ⊂ L1loc(R)For each f ∈ L1loc(R) one can associate a distribution Λ = Tf defined by
Λ(φ) = Tf (φ) = ∫

R
f (t)φ(t)dt (3.13)

for φ ∈ D(R). Now, (3.13) defines a distribution if K ⊆ R is compact and spt(φ) ⊆ K then
|Tf (φ)| ≤ (∫

K
|f (t)|dt) supx∈K|φ(x)|

So C = ∫K |f (t)|dt <∞, N = 0.
Remark. 1. If f is continuous differentiable then f ′ ∈ L1loc(R) and

Tf ′ (φ) = ∫
R
f ′(t)φ(t)dt, φ ∈ D(R)

= −∫
R
f (t)φ′(t)dt

In fact, using our earlier argument, in fact, if spt(φ) ⊂ [a, b] then
Tf ′ (φ) = ∫ b

a
f ′(t)φ(t)dt

= [f (t)φ(t)]ba − ∫ b

a
f (t)φ′(t)dt = 0− ∫ b

a
f (t)φ′(t)dt = −∫

R
f (t)φ′(t)dt

This motivates
DΛ(φ) = −Λ(φ′), φ ∈ D(R)
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as the derivative of a distribution. If Λ satisfies (3.12), then
|DΛ(φ)| = |Λ(φ′)| ≤ C‖φ‖N+1for φ with spt(φ) ⊆ K. So DΛ ∈ D(R) where Λ ∈ D′(R)Here are some more examples.

Example 6. Let f (t) = 0 for t < 0 and f (t) = t for t ≥ 0. Then f is continuous on R, f ∈ L1loc(R)but f /∈ Lp(R) for any 1 ≤ p ≤ ∞. We can define Λ = Tf and
Λ(φ) = ∫ ∞0 tφ(t)dt φ ∈ D(R)

then
DΛ(φ) = −Λ(φ′)

= −∫ ∞0 tφ′(t)dt
and if φ(t) = 0 for t > b, then

DΛ(φ) = −∫ b

0 tφ′(t)dt
= [−tφ(t)]b0 + ∫ b

0 φ(t)dt
= ∫ ∞0 φ(t)dt
= TH (φ)where

H(t) = {0, if t < 01, if t ≥ 0
the heavyside function. Of course H ∈ L1loc(R) but H ∈ L∞(R) but not H ∈ Lp(R) for 1 ≤ p <∞.

D2Λ(φ) = −DΛ(φ′)
= −∫ ∞0 φ′(t)dt

assuming φ(t) = 0 for t > b

= −∫ b

0 φ′(t)dt
= [−φ(t)]b0 = φ(0) = δ0(φ)

where δ0 is the dirac delta function, that is D2Tf = δ0 in D′(R). We can also define Dδ0 = D3Tf
Dδ0(φ) = −φ′(0)8



Example 7. All Λ ∈ D(R) roughly arise in the same way. Recall Theorem 6.26 (Rudin) that, forany compact set K ⊆ R, there exists a continuous function f on R and some integer k ≥ 0 so that
Λ(φ) = (−1)k ∫

R
f (t)φ(k)(t)dt (3.14)

for all φ ∈ D(R) and spt(φ) ⊆ K. It follows from this that (See theorem 6.28 Rudin) If Λ ∈ D′(R),there exists continuous functions q1, q2, · · · and nonnegative integers k1, k2, · · · so that
Λ = ∞∑

i=1 D
kiTgi (3.15)

and for any compact set K ⊂ R, only a finite number of gi are non-zero on K.Moreover, if Λ has finite order if the choice of N in (3.12) does not depend on K. In that casea finite number of g1, g2, · · · are needed in (3.15)Our earlier example shows
δ0 = D2Tf

f (t) = {0, if t < 0
t, if t < 0illustrates this.

9


	1. Representation theorems
	2. Weak derivatives
	3. Distribution theory
	3.1. The space D of test functions
	3.2. The space of D' of Distributions
	3.3. Calculus on Distributions
	3.4. Applications


