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Abstract
In this thesis, we aim to derive analytical formulae to price the
so-called Volume Weighted Average Price (VWAP) options. In
particular, the stock price is assumed to evolve as a geomet-
ric Lévy process and the trade volume process is modelled via
a shifted squared Ornstein Uhlenbeck process. First, the the-
ory of Lévy processes is discussed from both a probabilistic and
stochastic analysis point of view; Next, analytical formulae for
the first two moments of VWAP are derived, numerically com-
puted and VWAP call options prices are found; Finally, VWAP
is simulated to benchmark the analytical results.
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τγ : Lévy subordinated (time-changed) Brownian motion with independent Gamma subordinator

B(θ,σ)
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described by càdlàg function. In this thesis, this word is used whenever we speak of an unanticipated
process or discontinuous process whose values are unpredictable. One main example throughout this
thesis is the trajectories of stock price. On the other hand, càglàd means left continuous with right
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Chapter 1

Introduction

1.1 Motivation and Literature
VWAP options are derivatives written on VWAP. VWAP stands for Volume Weighted Average Price.
These derivative products are relatively new to the market place. An important question that our thesis
addresses is how to price such derivatives.

Most of the existing literature on VWAP focuses on the development of trading strategies and
algorithms [62]. We are aware of only two papers and one dissertation that discuss VWAP from an
option pricing point of view [62; 79; 80]. The two papers and the dissertation utilise a technique called
moment matching. In our view, it is crucial to analyse each method and to identify a suitable method to
work with. The main contribution of the paper [80] is the development of a moment-matching method to
find a lognormal approximation for the call option via approximating VWAP first and second moments
using a truncated Taylor series expansion. The author worked under a continuous time setting for
VWAP with a geometric Brownian motion for S(t) and a Cox-Ingersoll-Ross (CIR) model for volume
process U(t). It was shown that approximation for the first and second moments of VWAP can be
found by solving a large (19 equations!) system of ODEs. The author in paper [80] has also contributed
the following in his Ph.D. thesis.

• Derivation of a fundamental pricing PDE that describes the price of the VWAP options;

• Derivation of analytical formulae of the option bounds for both fixed and float strike VWAP
options;

• Evaluation of VWAP options Greeks via Finite Difference, Pathwise and Likelihood ratio methods;

• The paper [80] and the methodology in pricing VWAP exotic options (VWAP digital options);

• Solving the fundamental pricing PDE via Finite Difference, Crank-Nicolson and Alternating Di-
rection Implicit schemes;

• Development of a series solution to the VWAP option price.

The Novikov et al. [62] paper studies the approach in paper [80] and develops a semi-analytical
method. Three improvements are made. The first improvement is the approximation method used in
computing the moments of VWAP that involved a ratio of two integrals. In the former, the approxima-
tion method used required solving a large (19 equations!) system of ODEs. In contrast, in the latter,
the two moments are approximated by calculating the Laplace Transform of the integral of the squared
Ornstein-Uhlenbeck process. It is shown that calculation of this type relies only on change of measure
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via Girsanov theorem and does not involve solving PDEs and ODEs. This idea comes from the context
of calibration of an Ornstein-Uhlenbeck process [61]. Another improvement in the latter approach is
the derivation of the exact analytical formulae for the moments of VWAP. The third improvement
attributed to the choice of distribution being matched, the moments of VWAP are matched to the Gen-
eralised Inverse Gaussian (GIG) distributed in addition to matching with the lognormal distributed.
The numerical results comparison indicates that the GIG approximation is more accurate than the
lognormal approximation. Nevertheless, we will detail both approaches in chapter 3 in more depth.

As one can see, Stace’s approach works, but not as efficient. Solving a system of 19 ODEs is very
computational intensive and mistakes are more likely to occur. It was identified by one of the author
in paper [62] that one of the solution of the system of the 19 ODEs was in fact false. Hence, we adopt
the semi-analytical approach developed by Novikov et al. (2010) [62] as a main reference for this thesis
due to its simplicity and accuracy.

However, we would like to relax the following assumption on the original work of the original work
of [62].

• Stock price S(t) evolves as a GBM, i.e. S(t) ∼ lognormal(µ − 1
2σ

2,σ2)
• The Brownian motion under the price dynamics is uncorrelated with the Brownian motion in the

volume dynamics, which leads to the independence between the model for the stock price S(t)
and the volume U(t).

Consider the first assumption, recall the classical diffusion model (Merton (1973), Black and Scholes
(1973)) for the process S(t) is

dS(t) = S(t)(µdt + σdW (t))
where W (t) is a standard Wiener process, µ is the expected return and σ is the stock price volatility.
The solution of this equation is

S(t) = S(0)e(µ− 1
2σ

2)t+σW (t) (1.1)

The increments of the Log price are called continuous compounded return and are then given as

L(t) = log(S(t)) − log(S(t − 1)) = (µ − 1
2σ

2)t + σ(W (t) −W (t − 1))
which implies that returns are independent identically distributed (i.i.d.) Gaussian random variables.
It is well known that contrary to a Wiener process, ln(S(t)) are neither Gaussian, nor homogeneous
and do not possess the property of independent increments (see [56]). Indeed, the distribution of log
returns appear to be fat-tailed and asymmetrical, and these properties are not explained in the diffusion
based (Black Scholes) model. There is another important property of the market that is not explained
in Black Scholes, which is the phenomenon “volatility smile”. This is caused by the assumption that
volatility is constant over time in the Black Scholes model. Let us now analyse this problem.

1.1.1 Evidence of inadequacy of Brownian motion: Volatility skew and
smiles

The validity of an option pricing model is justified by the ability of capturing the state of the options
market at a given instant. A valid model for volatility smile should be capable of calibrating to liquid
stocks, bonds and options, then can be used to interpolate to the hidden hedging ratio (Delta) of a
regular or an exotic option. One of the well known smile model is the Black Scholes, it translates market
price of the option into a expression in function of implied volatility, denoted as σ̂t(T, K). Considering

2



the plain vanilla European call with payout

(S(T ) −K)+
Practically, such a option is expressed in term of two variables: the moneyness M = K

S(0) which is the
extent to which the option is in or out-of-the-money, and the time to maturity τ = T − t. At any time
t, the Black Scholes gives

CBS
i = fBS

i (t, M, τ, σ̂) = S(0)Φ(d1) −Ke−rτΦ(d2) (1.2)

where

d1,2 = − ln(M) + τ(r ± σ2

2 )
σ
√
τ

; M = K

S(0) ; τ = T − t ; Φ(x) = 1√
2π ∫

x

−∞ e−x2
2 dx

Since equation (1.2) is a continuous function of σ, mapping (0,∞) into ((S(t)−Ke−rτ)+, S(t))1. Hence,
given any market price C∗t (Ti, K) of a call option matures at Ti, one can always infer the value of
σ̂t(T, K) to match the Black Scholes price with market price. Mathematically,

∃! σ̂t(Ti, K) > 0 ∶ fBS
i (t, M, τ, σ̂t(Ti, K)) = C∗t (Ti, K)

σ̂t(Ti, K) is called (BS) implied volatility of the option, denoted as σ̂BS
t (Ti, K) from now. If the

assumptions underlying the Black Scholes formula were correct, the plot of the implied volatility of an
option across all level of strike prices and time to maturities should look flat, because the assumption
of the Black Scholes model is that the implied volatility σ̂t should not depend on i and the moneyness

K
S(0) .
Some possible causes of the volatility smile could be:

• Insufficient number of parameters in accurately describing the distribution of interest. In Black
Scholes model, stock price is assumed to evolve as a geometric Brownian motion with only two
parameters (M,σ2). Empirically, asset price are fat-tailed and skewed, hence more parameters
need to be considered. However, an increase of parameters results in a loss of model parsimony
and a balance need to be struck.

• Observed price processes are not continuous, they exhibit jumps and spikes.

In spite of these mentioned shortcomings, the Black Scholes model that based on Brownian motion
remains a reference model due to its simplicity. To preserve the parsimony of the Black Scholes model
one may keep the property of independent, stationary increments. Notice that in equation (1.1), the
exponent is in fact a Lévy process, out of all analytical tractable models which we considered, Lévy
process offers the ability to model skewness and kurtosis, hence a candidate that could be considered
in replacing Brownian motion is Lévy process. So, we assume

S(t) = S(0)eL(t) (1.3)

where L(t) is a Lévy process, L(0) = 0.

1.1.2 A flexible alternative: Jump-types Lévy processes
There is already a vast literature on Lévy processes. During the last fifteen years, there has been a great
revival of research interest in these processes, due to the theoretical development and applications to

1The interval is the greatest arbitrage bounds on call option prices
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option pricing in Mathematical Finance. Many textbooks, research papers and international conferences
were devoted to Lévy processes. Some of the reasons why these processes are important, and should be
studied are:

• They can generalise the random walk to continuous time.

• They are the simplest class of processes which paths consist of continuous interspersed with jump
discontinuous of random size at random times.

• The structure is rich enough to generalise wider classes of processes, such as semimartingales.

• As prototypes of semimartingales, these are natural models to construct stochastic integrals and
to derive stochastic differential equations.

• The structure is very robust in the sense of generalising from the Euclidean space to other spaces,
such as Banach and Hilbert spaces, Lie symmetry and quantum groups.

From the perspective of option pricing, a number of models have been developed in adopting more
flexible distributions than the Gaussian distribution. Some notable examples on the choices of distri-
butions which have been proposed are the the Normal Inverse Gaussian (NIG) [4], the Meixner process
(Schoutens [75]), the four-parameter distribution named CGMY after the names of Carr, Geman, Madan
and Yor [12], which was generalized to a six-parameter distribution in [13]. Since most of the proposed
processes belong to the family of Lévy processes, a vast literature on option pricing has been developed
in replacing the traditional underlying source of randomness, the Brownian motion, by a Lévy process.
But an important question in this thesis is the choice of the Lévy process . Some authors suggest to use
the Poisson Jump Diffusion Model, first put forward by Merton (1976) [50]. The convenient features of
this model is that the diffusion part is responsible for the usual fluctuations in the return series and the
jump part accounts for extreme events. However, there are several weaker points of this model. Madan
& Seneta (1990) strongly advocates against the use of jump diffusion and stochastic volatility models.
They argue that the parameters under diffusion based 2 models are highly unstable due to the inherent
infinite variation property [7] and they have gone one step further and have considered pure jumps
models with no diffusion component, this is the so-called Variance Gamma (VG) models. These are
purely discontinuous models (pure jump) with finite variation and infinite activity (low activity). As
the name suggests, these kinds of models have no continuous component, with discontinuities infinite
in number. The advocator uses economic analysis, combined with structural mathematical results, to
point to the use of pure jump price processes over continuous path processes. In short, under the law of
one price, the stock price process is an effective semimartingale. Every semimartingale can be expressed
as a time-changed Brownian motion. Hence, the study of price processes is reduced to the study of
time-changed Brownian motions. Now, the crux of Madan’s argument is that the price trajectory can
only continuous if the time change is continuous and locally deterministic. Intuitively, one may view
such time changes as measure of economic activity such as the arrival of new information, buy and sell
orders or trades. One would expect some randomness and local uncertainty from these activity, pointing
to a class of discontinuous price processes. Additionally, if time change is meant to be continuous, then
price process would also be continuous, then the process must be Gaussian, locally speaking. Hence,
their choice of using a pure jump models is justified. However, in this thesis, we have chosen to work
with a Lévy process with finite first moment of the following form

L(t) = θt + σW (t) +X(t) (1.4)
2includes Black Scholes, Stochastic volatility and jump-diffusion models

4



Our rationale for this choice is twofold [24].
First, the price process given by equation (1.3) is required to be a martingale. As it will be illustrated

in the rest of the thesis, a constant drift term can be easily computed in satisfying this requirement.
Second, for price process S(t) to be a martingale, both of the expectation of S(t) and the expectation

of the exponential of S(t) have to be finite. This is because, Lévy processes we use in finance are required
to have finite first moment. We would like a model that can allow the volatility smiles and long-tailness
of the return distribution, but not as long-tailness as not to allow for the existence of the first moments.
The requirement of finite exponential moment excludes Lévy processes of infinite variation such as the
stable processes. As we will illustrate in 2.3, the drift term in the new Lévy-Khintchine formula is
simply the expectation of the Lévy process at time 1, i.e. E(X(1)), and E(L(t)) = tE(L(1)), since the
diffusion component and the pure jump integral that is of finite variation are both martingales with
expectation of 0.

It shall be stressed that the purpose of this thesis is not to promote the use of alternative processes
or models, the aim is to provide enough theory so that jump processes and models built from these
results hold no mystery to us, and we can conveniently work with them when needed.

Another assumption of the original work [62] that meant to be relaxed is the assumption of indepen-
dence between Stock price S(t) and trade volume U(t). This is not necessarily realistic and deserves
to be relaxed. Motivated from the modelling of loss and allocated loss adjustment expense (ALAE)
amount in the actuarial literature, the original proposal for this thesis in addressing this issue was to use
copulas. Copulas are used in probability theory to model dependence between real random variables.
It is a useful mathematical tool for modelling the dependence structure of a multivariate distribution
separate from the marginal distribution without having to explicitly specify a unified, traditional joint
distribution. In the case of VWAP, it may allow us describe the joint distribution of S(t) and U(t)
while naturally characterize the dependence structure between the two objects. Since Lévy process is
of concern, we considered to use the Lévy process analog form of Clayton copula [82]. However, at a
later stage, we decided not to adopt this tool in pricing the VWAP options, but to concentrate purely
on the theory of Lévy process for this thesis. The reasons are twofold.

First, based on existing literature on Lévy copula3, to utilise the notion of Lévy copula, an implicit
assumption is that both marginal distributions of S(t) and U(t) need to be identical Lévy processes,
which contradict our assumption that U(t) is a squared Ornstein-Uhlenbeck process. In fact, the process
of volume is rather complex and can not be reconstructed from market prices [11], and it does not seem
to be reasonable to arbitrarily assume volume is of the same Lévy process as stock prices.

Second, although it is well known in actuarial community that copulas plays an important role
in modelling dependent risk, the practical implementation in Mathematical Finance and derivative
pricing appears to be unsuccessful. The methodology of applying Gaussian copula to credit derivative
was known to be one of the reason behind the global financial crisis of 2008-2009.

To incorporate the dependence in some fashion, we subsequently decided to use the classical approach
to relate two Wiener processes (See Klebaner (2006) p. 120). The method is quite simple, suppose we
know how to generate two independent Gaussian random variables, z1, z2, then another two random
variables can be generated from z1, z2 via the following equations.

x1 = z1

x2 = ρz1 +√1 − ρ2z2

3We are only aware of one paper on Lévy copula at the time of this thesis, [82], which is due to Peter Tankov.
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Replace the above two random variables with two Brownian motions, we have

W̄ (1)(t) = Ŵ (t)
W̄ (2)(t) = ρŴ (t) +√1 − ρ2W̃ (t) (1.5)

It is easy to verify that σ2(W̄ (1)(t)) = σ2(Ŵ (1)(t)) = t, and

Cov(W̄ (1)(t), W̄ (2)(t)) = Cov(W̄ (1)(t),ρŴ (t) +√1 − ρ2W̃ (t)) = ρt

Remark. The concept of correlated Brownian motion boils down to the use of Pearson’s correlation
(Linear correlation), which is the most frequently used in practice as a measure of dependence. Nev-
ertheless, we shall stress that the method described above works only when the random variables of
interest are Gaussian distributed, unlike copulas, that are invariant under strictly increasing transfor-
mations of the underling random variables, the use of linear correlation for dependence modelling is
quite misleading in general and shall not be taken as the canonical dependence measure. Fortunately,
our setup 4 allows us to utilise Pearson correlation to model the dependence structure between the
driving Brownian motions.

In closing, the difference between this thesis and the main reference paper [62] is twofold. First,
we consider a popular alternative to the classical geometric Brownian motion process in governing the
dynamics of the stock price, this is the jump-type geometric Lévy process. In particular, we focus on
the theory of the Lévy process.
Second, the dependence structure of the stock price and volume is modelled via a linear correlation
coefficient.

1.2 Problem Formulation
We consider the so-called VWAP options under a Lévy process, with the expiration date T and the
strike level K > 0, written on the so-called Volume Weighted Average Price. The problem is to find out
the expected payoff at time T of this option:

C(T ) = (A(T ) −K)+ =
⎛⎜⎜⎜⎜⎝

T∫
0

S(t)U(t)dt

T∫
0

U(t)dt

−K

⎞⎟⎟⎟⎟⎠

+

where

• S(t) = S(0) exp{rt +L(t)} (Stock price evolves as a Geometric Lévy process)

• L(t) =mt + σBMW̄ (2)(t) +XVG(t)
• U(t) =X2(t) + δ (Trade volume evolves as a shifted squared Ornstein Uhlenbeck processes)

• dX(t) = λ(a −X(t))dt + σOUdW̄ (1)(t)
We assume m,λ, σBM, σOU, a, δ are bounded constants and δ ≥ 0,λ > 0. In particular, λ being the
speed of mean reversion, a the long term average of the volume process, σOU,σBM are respectively, the
the volatility of the volume process and diffusion coefficient of the Brownian motion process. W̄ (1)(t),

4The two dependent random variables in our setup are two Wiener processes, which are Gaussian distributed with
mean 0 and variance 1.
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and W̄ (2)(t) are standard one-dimensional Brownian motions defined on some filtered probability space
(Ω,F ,F,P), with quadratic variation satisfying [W̄ (1), W̄ (2)](t) = ρt.

1.3 Research Objectives and Aims
Although there is a vast literature on pricing of Asian options, as just mentioned, very little literature
is found on the pricing of VWAP options. On the other hand, there is already a large and still growing
literature on option pricing with Lévy processes in a univariate setting, however, none of these papers
deal with the problem where the payoff of the options depends on volume weighted average price value
of the underlying asset price. This thesis aims to fill this gap. The objective of this thesis is twofold,
first, it has a pedagogical purpose in the sense of exploring basic properties of the Lévy process and
constructing the option pricing model from a theoretical (stochastic analysis) perspective. Second, we
extend the existing literature on VWAP option pricing to a Lévy process framework. In particular, we
utilise the semi-analytical method developed in Novikov et al. (2010) under a Lévy process framework.

The aims of this thesis are:

• To explore the theory of Lévy process and its stochastic calculus applications in Mathematical
Finance.

• To derive explicit formulae for the moments of VWAP that describe the distribution of the VWAP.

• To conduct Monte Carlo analysis to verify analytical results on VWAP moments.

1.4 Scopes of Research
• The moment-matching technique

This is a method to approximate a unknown distribution by a known one. To approximate a Non
Gaussian distributed by a lognormal distribution, we choose µ̃ and σ̃ of the lognormal distribution
such that the first and second moments match those of the target distribution. If X is a Gaussian
distributed random variable with mean 0 and variance 1, then let

A = eµ̃+σ̃x

be the lognormal variable approximating our distribution. We proceed to choose µ̃ and σ̃ such
that the moments

E(Ai) = eiµ̃+i2σ̃2/2

for i = 1, 2 yield the first and second moments of the approximated distribution. What remains,
is to calculate the moment of the approximated distribution5. Nevertheless, we elaborate the
moment matching technique in 5.3.

• The simulations and calculations
Monte Carlo simulation with 106 trials are implemented with MATLAB. Numerical integration
of multiple integral in exact expression of analytical moments is computed in Mathematica.

5In this thesis, the approximated distribution is the VWAP distribution
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1.5 Thesis Structure
This thesis is structured as follow: Chapter 2 describes the Lévy processes and its behaviour and
stochastic properties. Chapter 3 details the literature on VWAP options and provides the background
on VWAP in practice. Chapter 4 describes Variance Gamma (VG) model. Chapter 5 describes the
pricing setup for the VWAP options under a Geometric Lévy model, the pricing methodology (Moment
Matching approach) and derives the analytical formulae for moments of VWAP. Chapter 6 describes
the Monte Carlo Simulation of the underlying processes of the VWAP option. Chapter 7 presents
numerical results for moments of VWAP and call option prices that have been verified by Monte Carlo
simulations. Chapter 8 concludes. The appendix contains three parts.

Appendix A includes

• The necessary mathematics used in this thesis;

• Additional calculations of covariance function.

Appendix B includes

• Mathematica codes for the analytical approximations for the geometric Lévy model (main model)
concerned in this thesis.

• MATLAB Monte Carlo simulation codes for the geometric Lévy model (main model) concerned
in this thesis.

Appendix C includes

• MATLAB codes in simulating trajectories and option price under the geometric Brownian motion
model;

• Mathematica codes for the analytical approximations under the geometric Brownian motion
model;

• Mathematica codes for the analytical approximations in response to the change of correlation
level.

We also provide a CD that contains all Mathematica Codes, MATLAB codes and the exported data
for this thesis.
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Chapter 2

Lévy Processes and Geometric Lévy
models

2.1 Introduction
Lévy processes are objects from probability theory, which proceed Mathematical Finance, as well as
in other fields of science such as Physics (turbulence, laser, cooling), Engineering (telecommunication,
queues) and Actuarial Science (insurance risk model). One can think of Lévy processes as continuous
time analogues of random walk. The best known Lévy process, the Brownian motion, was introduced in
1900 by Bachelier. Later, in 1959, it was refined by Osborne and applied to stock prices by Samuelson
(1965) [73]. In addition to Brownian motion, Mandelbrot (1963) [49] put forward the symmetric stable
distribution. Later, pure jump based Lévy processes such as Variance Gamma (Madan and Seneta [48]),
normal inverse gaussian (NIG) (Barndorff-Nielsen et al. (1985)[4]) and CGMY [6], were developed and
studied. Generalized hyperbolic distributions was introduced with the intention of describing a physical
phenomenon: the migration of sand-dunes. Although the Generalised Hyperbolic (GH) distributions
were meant for something else, Barndorff-Nielsen inspired Eberlein and Keller to investigate these
distributions for modelling stock returns (Eberlein and Keller (1995) [25]). The results are distributions
that describe stock returns more accurately than the Brownian motion. The need to advance to these
more complicated models primarily comes from the hedging and pricing of options, where it is crucial
to be able to determine a practicable risk neutral probability of returns. Upon concluding that stock
returns are not Gaussian distributed one is left with the task of exploring models that describe returns in
way that allows for accurate hedging and option pricing. Flexibility is the key; What is needed is a model
that allows for excess kurtosis and skewness, such models can be found within the Lévy family. There
are four main classes of Lévy processes which feature heavily in current mainstream literature on market
modelling with Lévy processes [43]. They are jump-diffusion processes (consisting of a Brownian motion
with drift plus a independent compound Poisson process), the Generalized Tempered Stable processes
(which include Variance Gamma process and CGMY process), Generalized Hyperbolic processes and
Meixner processes. In this thesis the focus will be on Variance Gamma (VG) process. There is an
extensive literature that describes the theory of Lévy processes with applications to finance, including
several excellent reference books. We shall stress that this chapter presents a contribution by aiming to
provide an overview of Lévy process and their stochastic calculus applications in Mathematical Finance.
Some of the results may not be relevant to this thesis, but useful for applications in general. To serve
that purpose, most of the proofs are omitted. For the sections 2.2 to 2.5, we follow Sato (1999) [74],
Cont & Tankov (2004) [15] and Papapantoleon (2008) [64]; For the sections 2.6. and 2.7, we follow Cont
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& Tankov (2004), Protter (2005) [70] and Øksendal et al (2009) [20].

2.2 Lévy process and Infinite Divisibility
Let us start with the definition of two familiar processes, a Brownian motion and a Poisson process.

A real-valued process W = {W (t), t ≥ 0} with W (0) = 0 defined on a probability space (Ω,F ,P) is
said to be a Brownian motion if the following conditions are satisfied:

• The trajectories of W are P-a.s. continuous.

• It starts at zero: W (0) = 0 or P(W (0) = 0) = 1.

• Stationary increments:∀ 0 ≤ s ≤ t, W (t) −W (s) d=W (t + h) −W (s + h).
• Independent increment: ∀ 0 ≤ u ≤ s ≤ t, W (t) −W (s) is independent of {W (u), u ≤ s}
• Distribution identity:∀ 0 ≤ s ≤ t, W (t) −W (s) d=W (t − s).
• For each t > 0, W (t) ∼ N(0, t).

A process valued on the non-negative integer N = {N(t) ∶ t ≥ 0} defined on a probability space (Ω,F ,P)
is said to be a Poisson process with intensity λ > 0 if the following are satisfied:

• The trajectories of N are P-a.s. right continuous with left limits (RCLL).

• It starts at zero: N(0) = 0 or P(N(0) = 0) = 1.

• Stationary increment:∀ 0 ≤ s ≤ t, N(t) −N(s) d= N(t + h) −N(s + h).
• Independent increment: ∀ 0 ≤ u ≤ s ≤ t, N(t) −N(s) is independent of {N(u), u ≤ s}.
• Distribution identity:∀ 0 ≤ s ≤ t, N(t) −N(s) d= N(t − s).
• For each t > 0, N(t) is Poisson distributed with parameter λt.

The two processes seems to be considerably different from one another. Firstly, Brownian motion
has continuous trajectories whereas a Poisson process does not. Secondly, a Poisson process is a non-
decreasing process and has trajectories of finite variation1, whereas a Brownian motion has trajectories
of infinite variation.

Nevertheless, they share a lot in common. Both processes have right continuous paths with left
limits, start from the origin and both possesses the stationary and independent increment. With the
aid of these properties, we are in a position to define a general class of one dimension processes, which
are called Lévy processes.

Definition 2.1. A process X = {X(t), t ≥ 0} defined on probability space (Ω,F ,P) is said to be a Lévy
process if the following properties are satisfied:

• Càdlàg path: The trajectories of X are P-a.s. right continuous with left limits.

• It starts at zero: X(0) = 0 or P(X(0) = 0) = 1.

• Stationary increment:∀ 0 ≤ s ≤ t, X(t) −X(s) d=X(t + h) −X(s + h).
• Independent increment: ∀ 0 ≤ u ≤ s ≤ t, X(t) −X(s) is independent of {X(u), u ≤ s}.
1trajectories of bounded variation over finite time horizons

10



• Distribution identity:∀ 0 ≤ s ≤ t, X(t) −X(s) d=X(t − s).
Lévy processes are processes with very strong properties, the first properties can be observed directly

from Definition 2.1. That is, every Lévy process has the properties of stationary and independent
increments. In the early days of the research literature, Lévy processes were simply referred to as
processes with stationary and independent increments. Notice that these properties implies that a Lévy
process is a Markov process. With the aid of almost sure right continuity of trajectories, one may show
Lévy processes are also strong Markov processes2.

Based on the definition of Lévy process, one may not be able to see how rich a class of process the
class of Lévy process forms. De Finetti3 [18] introduces the notion of infinite divisible distribution. The
property of infinite divisibility is very powerful in the sense that it allows us to construct any Lévy
process of interest. A random variable is infinite divisible if it could be written as a sum of n i.i.d.
random variables, for all n ≥ 2. The meaning is that the distribution of Y (n)j depends only on n, but not
on j. Based on this property, the random variables could be reconsidered as a sum of smaller pieces.
More precisely,

Definition 2.2 (Infinitely divisible distribution). We say that a real valued random variable Θ has an
infinitely divisible distribution if for each n = 1, 2, ..., there exists a sequence of i.i.d. random variables
Θ1, ..., Θn such that

Θ d= Θ1,n + ... +Θn,n

Alternatively, we could have expressed this relation in terms of probability laws. That is to say, the
law µ of a real valued random variable is infinitely divisible if for each n = 1, 2, ... there exists another
law µn of a real valued random variable such that µ = µ∗n

n , the n-fold convolution of µn.

Theorem 2.1. All infinite divisible distribution is closed under affine transformations, convolutions
and limits.

The two well known distribution: Poisson and the Gaussian distribution, are infinitely divisible.
This can be verified by the respective characteristic functions,

ϕgauss(u) = exp(iθu − σ2

2 u2) , (2.1)

ϕpois(u) = exp (λ(eiu − 1)) , (2.2)

satisfy Definition 2.2.

2.3 Lévy-Khintchine Representation
The full extent to which we may characterize infinite divisible distributions is carried out via their
characteristic exponent ψ and this expression is known as the Lévy-Khintchine formula. This formula
builds the one-to-one correspondence between the Lévy process and its characteristic function. In this
section, we present two versions of the Lévy-Khintchine formulae. First,

Theorem 2.2 (Lévy Khintchine formula 1). Every infinite divisible distribution µ can be written in
the form

∫R eiuxµ(dx) = e−ψµ(u), u ∈ R
2The proof is not provided in this thesis as it is very technical and is beyond the scope of this thesis.
3Italian probabilist, statistician and actuary.
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with
ψµ(u) = −iθu + 1

2σ
2u2 −∫R(eiux − 1 − iuxI{∣x∣<1})ν(dx)

or some θ ∈ R,σ2 ≥ 0, and ν on R0 such that

∫R(1 ∧ ∣x∣2)ν(dx) <∞ (2.3)

The parameter θ,σ2 and ν uniquely characterize the distribution law µ. (θ,σ,ν(dx)) is a generating
triplet, where θ is the drift coefficient, σ2 the diffusion coefficient and ν the Lévy measure. ν(dx) will
often be of the form k(x)dx, and k is often referred as the Lévy density.

From the definition of Lévy process, we see that X(t) is an infinitely divisible random variable. This
follows from the fact that for any n = 1, 2, ...

X(t) =X(t/n) + (X(2t/n) −X(t/n)) + ... + (X(t) −X((n − 1)t/n)) (2.4)

together with the fact that X has stationary independent increments. Suppose now that we define for
all θ ∈ R, t ≥ 0,

ψt(u) = − logE(eiuX(t))
When t = 1, we have

ψ(u) = − logE(eiuX(1))
Using equation (2.4) twice we have for any integer m, n that

mψ1(u) = ψm(u) = nψm/n(u) ∀ m, n ∈ N
and hence for any rational t > 0,

ψt(u) = tψ1(u) ∀ t ∈ Q
where ψ(u) ∶= ψ1(u) is the characteristic exponent of X1 which has infinite divisible distribution.

Theorem 2.3. X(t) is infinitely divisible for a Lévy process {X(t), t ≥ 0}. Furthermore

ϕX(t)(u) = etX1(u) = eψ(u)

and
E(X(t)) = tE(X(1))

We see that each Lévy process can be associated with an infinitely divisible distribution. An im-
portant issue is that, given an infinitely divisible distribution, can we construct a Lévy process X, such
that X(1) has that distribution. The following theorem will answer this question.

Theorem 2.4 (Lévy-Khintchine formula for Lévy process). Suppose that θ ∈ R,σ ≥ 0 and ν is a measure
concentrated on R0 such that ∫R(1 ∧ ∣x∣2)ν(dx) <∞. From this triplet define for each θ ∈ R,

ψ(u) = −iθu + 1
2σ

2u2 −∫R(eiux − 1 − iuxI{∣x∣<1})ν(dx)
Then there exists a probability space on which a Lévy process is defined having characteristic exponent
ϕ.

The Lévy process is usually specified by a generating triplet: (θ,σ2,ν). Notice that if σ2 > 0 there
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is a continuous Gaussian component in the Lévy process X, otherwise, X is a pure jump Lévy process.
Pure jump Lévy process can be classified according to the behaviour of Lévy measure.

Proposition 2.5. Let X be a Lévy process with a generating triplet (θ,σ2,ν), the there are three cases
that one may consider.

• Case 1: ν is a finite measure, i.e., ∫R ν(dx) <∞;

• Case 2: ν is not finite, but ∫∣x∣≤1 ∣x∣ν(dx) <∞;

• Case 3: ν is not finite, and ∫∣x∣≤1 ∣x∣ν(dx) =∞.

Proposition 2.6.

1. If σ = 0 and ∫∣x∣≤1 ∣x∣ν(dx) <∞, then almost all paths of X have finite variation.

2. If σ ≠ 0 and ∫∣x∣≤1 ∣x∣ν(dx) =∞, then almost all paths of X have infinite variation.

For case 1, if σ = 0, then the stochastic processes so-called jump diffusions are obtained; Otherwise,
compound Poisson processes are obtained.

For case 2, if σ ≠ 0, then the process is an infinite activity process of bounded variation. Such
processes include the Gamma process, the Variance Gamma process.

Processes fall into case 3 in Proposition 2.5 are stable processes, they are not even of bounded
variation.

An important result mentioned previously, and will be used in the rest of the thesis is the following:

Theorem 2.7. If X = {X(t), 0 ≤ t ≤ T} is a Lévy process then for any t > 0 and u

ϕXt = E(eiuX(t)) = etψ(u) (2.5)

= exp{t(iθu − u2σ2

2 +∫R(eiux − 1−iuxI{∣x∣<1})ν(dx))} (2.6)

where
ψ(u) = iθu − 1

2σ
2u2 +∫R(eiux − 1 − iuxI{∣x∣<1})ν(dx) (2.7)

is the characteristic exponent of X1, a random variable with an infinite divisible distribution
for some θ ∈ R,σ2 ≥ 0,ν on R0 such that ∫R(1 ∧ ∣x∣2)ν(dx) <∞

Notice that the Lévy measure ν is not necessarily a probability measure and so it can either be finite
or infinite, hence ∫R(1∧ ∣x∣2)ν(dx) <∞ is required to ensure the tail of ν are finite. On the other hand,
should ν be a infinite measure due to unbounded mass around the origin, then it must at least integrate
locally against x2 for small value of x. The Lévy measure has the interpretation that ν(A) for any
subset A ∈ R is the rate which the process takes jumps of size x ∈ A. Alternatively, one can view it as
the number of jumps of size falling in A per unit of time. The trajectories are continuous if and only if
ν = 0.

The dynamics of the Lévy-Khintchine formula boils down to the integral over the Lévy measure. We
see that in equation (2.7), the compensation of small jumps is highlighted in red. Such compensation
is necessary in general. Now take t = 1, then the Lévy-Khintchine formula becomes

E(eiuX1) = exp{iθu − 1
2σ

2u2 +∫R(eiux − 1 − iuxI{∣x∣<1})ν(dx)}

13



If the following integrability condition is satisfied,

∫∣x∣≤1
∣x∣ν(dx) <∞

then we no longer need the compensation of small jumps, and the red term can be taken out from the
integral and to be added to the drift term, i,e.

E(eiuX1) = exp{iθ′u − 1
2σ

2u2 +∫R(eiux − 1)ν(dx)} (2.8)

where θ′ = θ − iu ∫{∣x∣<1} xν(dx). If a stronger integrability condition holds, i.e.

∫∣x∣>1
∣x∣ν(dx) <∞

Then we can also compensate large jumps, i.e.

E(eiuX1) = exp{iθu − 1
2σ

2u2 +∫R(eiux − 1 − iuxI{∣x∣<1})ν(dx)}
= exp{iθu − 1

2σ
2u2 +∫R(eiux − 1)ν(dx) − iu∫R xI{∣x∣<1}ν(dx)}

= exp{iθu − 1
2σ

2u2 +∫R(eiux − 1)ν(dx) − iu∫R xI{∣x∣<1}ν(dx) + iu∫R xI{∣x∣>1}ν(dx) − iu∫R xI{∣x∣>1}ν(dx)}
= exp{i(θ +∫R xI{∣x∣>1})u − 1

2σ
2u2 +∫R(eiux − 1 − iux)ν(dx)}

= exp{iθ′′u − 1
2σ

2u2 +∫R(eiux − 1 − iux)ν(dx)}
where θ′′ = θ + ∫∣x∣>1 xν(dx).

To summarise the above, there are three central concepts of Lévy process that one shall bear in
mind before working with Lévy process.

First, the property of infinitely divisibility and the Lévy-Khintchine theorem. Some may ask why
are they necessary and deserve us to study? One main reason is that they are the restrictions one
shall be aware of before modelling and inferencing with Lévy process. If we take an infinite divisible
distribution, take its parameters as (θ,σ2,ν), and in that framework we can construct a Lévy process
in the form of

X(t) =X(1)(t) +X(2)(t) +X(3)(t)
where X(1) is a linear trasnformation of a Wiener process with drift, X(2) is a compound Poisson
process with jump size at least larger than 1, X(3) is a pure-jump martingale with jump size less than
one.

However, if we take any other non infinitely divisible distributions, such as the uniform distribution.
then we cannot construct a Lévy process with that distribution. We cannot set up any part of the above
formula because θ,σ2,ν are not present. Hence, it fails at the very beginning of having an incorrect
distribution.

Proposition 2.8. Let X be a Lévy process with a generating triplet (θ,σ2,ν).Then

• Xt has finite pth moment for p ∈ (0,∞), i.e. E(∣X(t)∣p), if and only if

∫∣x∣≥1
∣x∣pν(dx) <∞
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• Xt has finite pth exponential moment for p ∈ (0,∞), i.e. E(epX(t)), if and only if

∫∣x∣≥1
epxν(dx) <∞

Proposition 2.9. If E(∣X(t)∣) <∞, i.e., ∫∣x∣≥1 ∣x∣ν(dx) <∞, then
E(X(t)) = t(θ + ∫∣x∣≥1 ∣x∣ν(dx)), the process X(t) −E(X(t)) is a martingale.

Proposition 2.8 indicates that the existence of the moments is determined by the frequency of the
big jumps. Proposition 2.9 allows us to compensate big jumps to form a martingale. Hence the Lévy-
Khintchine formula takes the form

E(eiuX(t)) = exp{t(iuθ′′ − u2σ2

2 +∫R(eiux − 1 − iux)ν(dx))} (2.9)

where θ′′ = θ + ∫∣x∣>1 xdν(dx).
As mentioned in last chapter, the class of Lévy processes we consider in Mathematical Finance is

required to have finite first moment, proposition 2.8 helps us to identify such processes.
Another important concept is the Lévy measure. The studies of Lévy measure is important as it

allows one to determine whether a process is of finite or infinite variation. As discussed previously, the
integrability of Lévy measure carries information about the finiteness of the moments of a Lévy process.
The finiteness of the moments of a Lévy process is related to the restriction of the Lévy process to big
jumps, i.e. jump size larger than 1 in absolute value. This is a particular useful piece of information in
Mathematical Finance as it relates to the existence of a martingale measure.

In the context of financial modelling, we would like to work with the subclass of Lévy process has
at least the first moment exist. The rationale is that, for this subclass, a stronger integrability criterion
holds for the integral over the Lévy measure, i.e. ∫∣x∣≥1 ∣x∣ν(dx) <∞, hence one can compensate the big
jumps into the drift term and the Lévy Khintchine formula has a reasonable form where the mean of
the process appears as the drift term, i.e.

θ
′′ = θ +∫∣x∣>1

xdν(dx) = E(X(1))
The new drift term θ

′′ = E(X(1)) since the diffusion component and pure jump component in equation
(2.9) are martingales.

We will call Lévy process of this type a special semimartingale4 that can be decomposed into

X(t) = θt + σW (t) + J(t)
where W is a Wiener process and J is a purely discontinuous martingale that is independent of W .
The above equation is our choice among all other subclass of Lévy process as it ensures the existence
of first moment.

Now we introduce the concept of subordination, following with some examples of Lévy process used
in various applications.

2.4 Subordination of Lévy process
The concept of subordination is important as it allows us to transform from one Lévy process to another
by time-changing with an increasing Lévy process. More precisely,

4As it will be defined in equation (2.15)
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Definition 2.3. A real-valued Lévy process is said to be a subordinator if it has a.s. nondecreasing
trajectories. The generating triplet must satisfy

ν(−∞, 0) = 0, σ2 = 0, ∫ 1

0
xν(dx) <∞, θ̄ = θ +∫ 1

0
xν(dx) > 0

and the Lévy-Khintchine formula takes the form

E(eiuX(t)) = exp{t(iuθ̃ +∫ ∞
0
(eiux − 1)ν(dx))}

Proposition 2.10. Let τ be a subordinator with Lévy measure ν, drift θ and one-dimensional law
f . Let Y be a Lévy process on R with triplet (θ,σ2,ν) and one dimensional law g. If τ and Y are
independent, define the process

X(t) = Y (τ(t))
Then X is a Lévy process on R with a generating triplet (θ̃, σ̃2, ν̃).

Many popular Lévy processes are created through subordination. For instance, the Variance Gamma
(VG) process is a Wiener process subordinated by a Gamma process [48]. The idea of constructing a
VG process through subordination is the following:

Suppose we start with a Wiener process with drift coefficient θ and diffusion coefficient σ

B(t; θ,σ) = θt + σW (t)
Now let’s randomise the time index t by letting it follow a gamma process with unit mean rate and
variance rate ν, i.e. τγ ∼ Γ( t

ν ,ν). The Gamma process is infinitely divisible, this results a pure jump
Lévy process that has an infinite number of jumps in any interval of time:

B(θ,σ)
τγ

=XVG(t) = θτγ(t) + σW (τγ(t))
Similarly, the Normal Inverse Gaussian process is a Wiener process subordinated by Inverse Gaussian
process [4]. In this case, the time change is given by a Inverse Gaussian distribution. The Inverse
Gaussian distribution is infinitely divisible and the resulting pure jump Lévy process is

B(θ,σ)
τIG =XNIG(t) = θτIG(t) + σW (τIG(t))

The Generalised Hyperbolic process is a Wiener process subordinated by a Generalise Inverse Gaussian
process [25]. In this case, the time change is given by a Generalised Inverse Gaussian distribution.
The Generalised Inverse Gaussian distribution is infinitely divisible and the resulting pure jump Lévy
process is

B(θ,σ)
τGIG =XGH(t) = βτGIG(t) + σW (τGIG(t))

2.5 Examples of Lévy process
In this section we give some examples of Lévy processes used in finance, economics, risk management
and actuarial science.
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2.5.1 Gaussian Process
The definition of Gaussian Process can be found in most of the elementary stochastic process textbook
(See [8; 39]). Let X(t) ∼ N(µt,σ2t), the characteristic exponent of a Gaussian process is given by

ψ(u) = iθu − u2σ2

2 u ∈ R
Clearly this characteristic is of the form (2.7) with ν(A) = 0, ∀A ∈ B(R0)

Gaussian process is infinitely divisible and the following holds:

ϕXt(u) = exp(iθut − u2σ2t

2 )
= exp(n(iuµt

n
− 1

2u2σ
2t

n
))

= (exp(iuµt

n
− 1

2u2σ
2t

n
))n

= (ϕX(t/n)(u))n
where X(t/n) ∼ N(µt

n , σ
2t
n ).

2.5.2 Poisson Process
Definition 2.4 (Poisson process). The counting process Nt with N0 = 0 is said to be a Poisson process
having intensity rate λ > 0 if Nt has independent increments and for all s, t ≥ 0

P (Nt −Ns = k) = e−λ(t−s)(λ(t − s))k
k! (2.10)

for k ∈ {0, 1, ...}, t ∈ [0,∞) and s ∈ [0, t]
Consider the Dirac measure δc ∶ B(R)!→ [0,∞) where

δc(A) = I{A}(c) = Ic∈A

The characteristic exponent of a Poisson distribution is

ψ(u) = λ(eiu − 1) u ∈ R
is of the form (2.7) with θ = σ2 = 0 and ν(A) = λδ1(A)

Poisson process is infinitely divisible and the following holds:

ϕXt(u) = exp (λt(eiu − 1))
= (exp(λt

n
(eiu − 1)))n

= (ϕX(t/n)(u))n
where X(t/n) ∼ Poisson(λt

n )
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2.5.3 Compound Poisson Process
Definition 2.5 (Compound Poisson Processes). A stochastic process Xt is said to be a compound
Poisson process if it can be represented as

Yt = Nt∑
k=1

ξk (2.11)

for t ∈ [0,∞). A Compound Poisson Processes generates a sequence of pairs (τk, ξk)k∈N of jump times
τk and marks5 ξk. Nt is a Poisson process with intensity rate λ and the marks ξk are iid r.v.’s which
are also independent of Nt.

The characteristic exponent of a compound Poisson distribution is given by

ψ(u) = ∫R(eiux − 1)λf(dx)
where f is the law of the jumps. This characteristic exponent is also of the form (2.7) with θ =
∫ 1−1 xλf(dx),σ2 = 0 and ν(dx) = λf(dx).

Compound Poisson process is infinitely divisible. To show this, first let the characteristic function
of marks be E(eiux) = ∫R eiuxf(dx), then conditioning on there being n jumps on the interval [0, t], we
have

E(eiuXt ∣Nt = n) = E(eiu(X1+...Xn)∣Nt = n) = (∫R eiuxf(dx))n

,

by the independence of the marks x1, ..., xn.
Recall that, for a Poisson process, P (Nt = n) = (λt)n

n! e−λt. By the tower law (See Appendix A: Mathe-
matical Preliminaries), the unconditional expectation is then

E(eiuXt) = E(E(eiuXt ∣Nt))
= ∞∑

n=0
P(Nt = n)E(eiuXt ∣Nt = n)

= ∞∑
n=0

(λt)n
n! e−λt(∫R eiuxd(dx))n

= e−λt
∞∑

n=0

(λt(∫R eiuxf(dx)))n
n!

= exp{−λt + λt(∫R eiuxf(dx))}
= exp(λt∫R(eiux − 1)f(dx))
= exp(λt

n ∫R(eiux − 1)f(dx))n

= (ϕX(t/n)(u))n

2.5.4 Generalised Inverse Gaussian Distribution
This family is a generalisation of the Inverse Gaussian (IG) distribution and has been studied exten-
sively in Jørgensen (1982) [37]. The Generalised Inverse Gaussian Distribution is a three parameter
distribution, it arises in the context of the first passage time of a diffusion process, when the drift and
variance of displacement per unit time are dependent upon the current position of the particle [1]. It is
proven to be infinitely divisible [5] and generate a Lévy process (a subordinator). The three parameter

5‘marks’ stands for the size of the jumps, see [67]

18



GIG distribution has the density function as follows:

f(x) = (a/b)p/2
2Kp(√ab)xp−1e−(ax+b/x)/2, x > 0

where Kp(⋅) is a modified Bessel function of the second kind with index p. The variation of the parameter
of the GIG distribution is [26]

θp =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{(b, a) ∣ b ≥ 0, a > 0}, if p > 0
{(b, a) ∣ b > 0, a > 0}, if p = 0
{(b, a) ∣ b ≥ 0, a ≥ 0}, if p < 0

The above means that if p > 0, b = 0, the GIG distribution reduces to a Gamma distribution; If a =
0, p < 0, the GIG distribution reduces to a Reciprocal Gamma distribution. When p = −1

2 , we obtain
the Normal Inverse Gaussian distribution. Other important cases are p = 0 (the hyperbola distribution)
and p = 1.
The GIG distribution has a characteristic exponent of the form (2.6) with Lévy measure

ν(dx) = 1
x
(b∫ ∞

0
e−xtgp(2bt)dt + (0, p)+)e−ax/2dx

where
gp(y) = 1

π2

2 y(J2∣p∣(√y) +M2∣p∣)(√y) , y ≥ 0

where J and M are modified Bessel functions. We refer to Abramowitz and Stegun (1970) for further
discussion on Bessel functions.

Note that we may not be able to determine whether the process is of finite variation or infinite
variation as the Lévy measure for this class involved special functions and it is quite involved.

2.5.5 Generalised Hyperbolic Distribution
The generalised hyperbolic distribution (GH) is a continuous probability distribution defined as the nor-
mal variance mean mixture where the mixing distribution is the generalise inverse Gaussian distribution,
i.e.

Y = α + βV + σ√V X

where α, β ∈ R, σ > 0 and random variable X and V are independent, X ∼ N(0, 1). V is a continuous
distribution. In this case V is a Generalised Inverse Gaussian (GIG) distribution having the density of
the form equation (2.5.4). The conditional distribution of Y given V has mean α+βV and variance V .
Moments of any order exist.

The GH process can be constructed via subordination by setting the time change as a GIG distri-
bution. If we define

XGH(t) = µt + βτGIG(t) +W (τGIG(t))
where W (t) is a Wiener process and τGIG(t) is generated by GIG process.

This family was first introduced by Barndorff-Nielsen (1977) [5]. In term of the α,β, δ parameterisa-
tion, the density function of the Generalised Hyperbolic (GH) Distribution is given in terms of modified
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Bessel function of the second kind, denoted by Kλ

p(x;λ,α,β, δ, µ) = (γ/δ)λ√
2πKλ(δγ)e

β(x−µ) × Kλ−1/2(α√δ2 + (x − µ)2)
(√δ2 + (x − µ)2/α)1/2−λ

where the parameter α > 0 determines the shape, β with 0 ≤ ∣β∣ < α the skewness and µ ∈ R the
location. δ > 0 is the scaling parameter and γ = √α2 − β2. As the name suggests the GH distribution
is of a very general form, it embraces many subclasses, respectively the student’s t-distribution, the
Laplace distribution, the hyperbolic distribution, the normal-inverse Gaussian distribution and the VG
distribution. The main applications of GH distribution are those when require sufficient probability of
far-field behaviour, which it can model due to its semi-heavy tails. All of the mentioned subclasses of
the GH distribution have been widely used in modelling financial returns and risk processes, due to its
semi-heavy tails. The parameter λ ∈ R defines the subclasses,as it controls the heaviness of the tails.
For λ = 1 we have the hyperbolic distribution, for λ = −1/2 we have the normal inverse Gaussian. For
δ = 0 we have the VG distribution. It is worth noticing that the two subclasses of the GH distribution
Normal inverse Gaussian and VG are closed under convolution.
The name of this family comes from the fact that, for λ = 1, the logarithm of the density gives an
hyperbola, unlike the case of a Gaussian distribution where gives a parabola. As a consequence, the tail
of the distribution decays slowly with respect to the Normal. By changing the axis of the hyperbola we
get positively and negatively skewed densities.
The characteristic exponent is of the form (2.7) and is given by

ψ(u) = iuE(GH) +∫ ∞
−∞ (eiux − 1 − iux)ν(dx)

where E(GH) = µ+ δβKλ+1(δγ)
γKλ(δγ) . The Lévy measure ν in terms of Bessel functions of the first and second

kind is given as follows:

ν(dx) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

eβx

∣x∣ (∫ ∞0 e−∣x∣
√

2y+α2

π2y(J2
λ(δ√2y)+M2

λ(δ√2y))dy + λe−α∣x∣)dx, if λ ≥ 0
eβx

∣x∣ (∫ ∞0 e−∣x∣
√

2y+α2

π2y(J2−λ(δ√2y)+M2−λ(δ√2y))dy)dx, ifλ < 0

J and M are modified Bessel functions. We refer to Abramowitz and Stegun (1970) for further discussion
on Bessel functions.

Again, similar to the case of GIG, the complicated expression of the Lévy measure does not allow
us to determine whether the process is of finite variation or infinite variation.

Note that the Gaussian coefficient σ2 is 0. Another remark of this family is that a random variable
X gaving a generalised hyperbolic distribution can be written as a mean-variance mixture of a normal
distribution. That is, X is conditionally distributed as a normal N(µ+ βσ2,σ2) where, in turn, σ2 has
a generalised inverse Gaussian distribution.

2.5.6 Variance Gamma process
We end this section with a example of the most important Lévy process, being the VG process. The
VG process is first introduced by Madan and Seneta (1990). The characteristic exponent of a VG
distribution

ψ(u) = −1
ν

ln(1 + u2σ2

2 ν − iuθν) = ln
⎛
⎝

1
1 + u2σ2

2 ν − iuθν

⎞
⎠/ν, u ∈ R,
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and the Lévy measure is

ν(dx) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

C1
e−C3x

x dx, if x > 0
C2

eC4x

x dx, if x < 0

Nevertheless, VG process will be discussed in full detail in Chapter 4.

2.6 Stochastic Calculus for Lévy processes
Given a monetary asset whose price is represented by a stochastic process S = {S(t), t ∈ [0, T ]}, two
problems related to S are often of concern:

• Construction of trading strategies involving S.

• Analysis of synthetic products whose value depends on S

we need to have some tools that allows us to perform transformations of the Lévy processes. As in
classical diffusion model, stochastic integrals and the Itô formula play a central role. To describe
trading strategies against S, we need stochastic integrals. To describe the dynamics of a derivative
instrument whose value depends on S(t), we need Itô Calculus. To perform transformation under Lévy
based model, the same principal holds. In this section, Some basic notions of semimartingales (as a
generalisation of Lévy process) are introduced. In particular, we focus on the construction of stochastic
integral with respect to a semimartingale. Following, Itô formulae for Lévy process are presented.

2.6.1 Semimartingales
All Lévy processes are semimartingales because any Lévy process can be splitted into a sum of squared
integrable martingale and a finite variation process. Semimartingales is a very rich class of processes.
The class of semimartingales is considerably stable under stochastic integration and nonlinear trans-
formation, it is also stable under other operations such as change of measure and time change. Hence
it turns out to be sufficient to work with semimartingales to model finite dimensional problems that
usually appear in finance, risk management and actuarial science [67]. In short, a semimartingale is
simply a local martingale plus a process of finite variation. More precisely,

Definition 2.6 (Semimartingales). A regular right-continuous with left limits (càdlàg) adapted process
is a semimartingale if it can be represented as a sum of two processes: a local martingale Mt and a
process of finite variation At, with M(0) = A(0), and

S(t) = S(0) +M(t) +A(t) (2.12)

for all t ∈ [0,∞)
In addition, a semimartingale of the form (2.12) can be decomposed into continuous and discontin-

uous parts [67]. This means that if discontinuous part of A(t) and M(t) are represented as

Ad
t = ∑

0≤s≤t

∆As and Md
t = ∑

0≤s≤t

∆Ms

then processes A and M can be split into a continuous and discontinuous part:

At = Ac
t +Ad

t (2.13)
Mt =M c

t +Md
t (2.14)
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Definition 2.7 (Special semimartingales). A semimartingale S is said to be a special semimartingale
if it can be written

S(t) = S(0) +M(t) +A(t) (2.15)

where M(0) = A(0) = 0. M(t) is a local martingale, and A(t) is predictable and of finite variation.

The class of semimartingales includes a wide range of stochastic processes such as Markov chain,
diffusion processes and Lévy processes. By equation (2.12) and Lévy Ito decomposition we see that a
Lévy process is clearly a semimartingale.
It should be stressed that, for a semimartingale S, the process of jumps is defined as ∆S(t) = S(t)−S(t−).
As far as trading strategies are concerned, it is convenient to work with a stochastic integral with respect
to a semimartingale. Suppose we hold a portfolio of m asset: S(t) = (S1

t , ..., Sm
t ). Each S1

t , ..., Sm
t are

càdlàg. This investment portfolio lasts for one year, i.e. T = 1, the intervals [0, t] is discretized time
intervals T0 = 0, T1, T2, ..., Tn = T . Let ζj be any strategy in the j-th stock, j = 1, 2, ..., m. The trade
portfolio being considered is a m dimensional vector describing the amount of each share held by us. In
other words, we hold m stocks and the value of the stocks is described by the vector S(t) = (S1

t , ..., Sm
t );

The positions taken can be described by vector ζ(t) = (ζ1
t , ..., ζm

t ). So at any time t ∈ [T0, Tn],the value
of of each j-th position in our portfolio is given by ζjSj

t . By summing up over j, the value of the entire
portfolio at any time is

Vt(ζ) = m∑
j=1

ζjSj
t = (ζ ⋅ S)(t) ∶= ∫ t

0
ζ(u)dS(u)

Now let’s reverse the previous portfolio by shorting m shares. The second portfolio πt(ζ) is constructed
simultaneously to the investment portfolio Vt(ζ) at time 0, assume each share in the πt(ζ) has a value
of 0 at time 0, and the price is fixed over the rest of the holding period up to T = 1, in other words, the
turnover between each two transaction Tk and Tk+1 is constant and hence the portfolio value remains
unchanged. Mathematically, the amount of each asset held at date t could be described by a simple
predictable process ζ(t) and expressed as

ζ(t) = ζ(0)I0 + n−1∑
k=0

ζkI(Tk,Tk+1]

We see that the indicator function is of the form I(Tk,Tk+1] (left continuous) as opposed to I[Tk,Tk+1)
(right continuous). This operation allows the value at tk to be defined before the jump ζ(Tk) ∶= ζ(Tk−),
which is reasonable. In practice, the transaction dates can be viewed as stopping times (non-anticipated
random times) in the sense that they form a random partition over [0, T ]. Since the new position ζk is
chosen based on the information available up to Tk, hence ζk is FTk measurable. From a practitioner’s
point of view, regardless the fact that the transaction settles at t = Tk, the portfolio is still described
by ζk−1. It takes new value ζk right after settlement. Hence, the indicator function is càglàd rather
than càdlàg, which is practically sensible. It shall be stressed that stochastic processes of the above
equation form are called simple predictable processes. A predictable process is important in constructing
stochastic integrals because it is the only type of process that can be integrated w.r.t. a semimartingale.
The offsetting portfolio πt(ζ) is constructed in reversing the first portfolio, so again let ζj be the strategy
in the j-th share. At time 0 the value of the strategy has value 0 (or any other initial value). The
position for j-th stock at any transaction date over the trading horizon can be described as follows.

t = T0 = 0 ζj
0 position in share with price Sj

0 ζj
0Sj

0
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t = T1 ζj
T1

position in share with price Sj
0 ζj

T1
Sj

T1

⋮ ⋮ ⋮
t = Tn ζj

Tn
position in share with price Sj

0 ζj
Tn

Sj
Tn

Between Tk and Tk+1, the position of stock in the portfolio is ζk and the asset moves by (S(Tk+1)−
S(Tk)) so the the profit gained from selling each k can be conveniently expressed by ζk ⋅(S(Tk+1)−S(Tk)).
For instance, the value of our ζj

0 position at time T1 equals

πT1 = ζj
0(S(T1) − S(T0))

After n steps, the investor starting with a position ζ0 following the strategy ζ will have accumulated
capital at the end of the trading gorizon T equals to :

πT = n−1∑
k=0

ζj
Tk
(S(Tk+1) − S(Tk)) →

n→∞ ∫
T

0
ζj

ndS (2.16)

The gain process associated with strategy ζ is denoted as πt(ζ). For the stochastic integral to be
interpreted as the gain process of the strategy ζ, the portfolio ζk should be constructed at the beginning
of the period, Tk.6 The gain process is described by equation (2.16) is the one dimensional stochastic
integral of the predictable process ζ w.r.t. S and denoted by

πt(ζ) = n−1∑
k=0

ζk(S(tk+1) − S(tk))→ ∫ t

0
ζdS = (ζ ⋅ S)(t) = Vt(ζ) for any tk < t ≤ tk+1 (2.17)

A convenient notation for the stochastic integral in equation (2.17) is IS(ζ). Equation (2.17) indicates
that the stochastic integral ∫ t

0 ζdS represents the capital accumulated between 0 and t by following
strategy ζ. A strategy (ζt)t∈[0,T ] can only be self-financing if the cost associated with the strategy,
Ct(ζ) is a.s. 0, in other words, the worth of the portfolio, i.e. Vt(ζ) = ζtS(t) must equal to πt(ζ).

The stochastic integral of predictable process ζ with respect to S ∶ ∫ t
0 ζdS represents the capital

accumulated between 0 and t by the strategy H. In other words, equation (2.17) represents a gain
process associated with strategy H.

The stochastic integral not only represents a gain process associated with a particular trading
strategy, but also can be used as a means of constructing new processes and new martingales from
the old ones: given a nonanticipating càdlàg process {L(t), t ∈ [0, T ]} one can build new processes
∫ t

0 σsdXs by choosing (simple) predictable process {σ(t), t ∈ [0, T ]}. Here L(t) can be viewed as the
“source of randomness” and “σ(t)” can be viewed as the “diffusion coefficient”. Starting with a simple
stochastic process L such as a Lévy process, this procedure can be used to build stochastic models with
desired properties. The following result shows that if the asset price is modelled as a stochastic integral
S(t) = ∫ t

0 σdL with respect to a “source of randomness” then the gain process of any strategies involving
S can also be expressed as a stochastic integral with respect to L.

Proposition 2.11 (Associativity). Let {L(t), t ∈ [0, T ]} be a real-valued càdlàg process and σ(t), t ≥ 0
and {ζ(t), t ≥ 0} be real-valued simple predictable process. Then S(t) = ∫ t

0 σdL is a càdàg process and

∫ t

0
ζudSu = ∫ t

0
ζuσudLu

6hence ζk can be known at Tk while the variation of share S(Tk+1) − S(Tk) is only known at the end of the period,
Tk+1.
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The relation St = ∫ t
0 σ(s)dL(s) is often abbreviated to a “diffrential” dSt = σtdLt, which should be

understood as a shorthand for the integral notation.

So far we have posed no restrictions on the process S in order to make sure that the stochastic
integral is well behaved. By well behaved we mean the stability: a small change in process ζ should
lead to a small change in the stochastic integral IS(ζ). It is known that not all processes satisfy this
criteria ([15], p.253). The processes that do satisfy this criteria are so-called semimartingales. More
precisely, the strategy ζ is required to converge uniformly, then IS(ζ) should converge in probability.
A more mathematically formulated definition of semimartingale is the following:

Definition 2.8 (Semimartingale). A nonanticipating càglàd process S is called a semimartingale if the
stochastic integral of simple predictable processes w.r.t. S:

ζ(t) = ζ(0)I0 + n−1∑
k=0

ζkI(Tk,Tk+1]

verifies the following continuity property: for every ζn, ζ ∈ S([0, T ]) if

sup(t,ω)∈[0,T ]×Ω
∣ζn

t (ω) − ζt(ω)∣ → 0
n→∞ (2.18)

then

∫ T

0
ζndS

P→
n→∞ ∫

T

0
ζdS (2.19)

If the continuity property above does not hold when modelling asset price by S(t), a very small error
in the composition of the strategy will lead to a enormous loss in the portfolio. Hence, semimartingales
are often the preferable class of stochastic process in continuous time trading.

As was shown when we described the jump part of Lévy processes, the sample paths of the process
may not always be of finite variation (a well-known example could be Brownian motion). Hence we
need to consider the quadratic variation of the process to perform a change of variables. Recall the
quadratic variation of a stochastic process Xt over interval [0, t] in general is defined as.

[X, X](t) = lim
δn→0

n∑
k=1
(X(tn

k) −X(tn
k−1))2 (2.20)

In the case of a semimartingales (and hence Lévy processes), quadratic variation can be defined in
accordance to Protter (2005) p.66 [70].

Definition 2.9 (Quadratic Variation of semimartingales).

1. The quadratic variation process of a semimatingale X is the nonanticipating càglàd process defined
by

[X, X](t) = ∣X(t)∣2 − 2∫ t

0
X(u−)dX(u) (2.21)

2. The quadratic variation of semimartingales X and Y is defined by

[X, Y ](t) =X(t)Y (t) −X(0)Y (0) −∫ t

0
X(s−)dY (s) −∫ t

0
Y (s−)dX(s)

where pn = (tn
0 = 0 < tn

1 < ... < tn
n+1 = T ) is a sequence of partitions of [0, T ] such that

∣pn∣ = supk ∣tn
k − tn

k−1∣→ 0 as n→∞
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Remark 2.1. X(s−) is used in the integrand. This is necessary because X(s) is not a predictable
process, whereas X(s−) is. (See Protter (2005) [70])

Notice that the Lévy process could be decomposed into a continuous part and a discontinuous part.
This implies that we can decomposed the quadratic variation into a continuous part and a discontinuous
part. More precisely,

Definition 2.10. For a semimartingale X, the process [X, X]c denote the path-by-path continuous
part of [X, X]. We then have

[X, X](t) = [X, X]c(t) + ∑
s∈(0,t]

(∆X(s))2

If [X, X]c(t) = 0, then X is called a (quadratic) pure jump process. 7

Corollary 2.12. If X is a semimartingale, then for each t, ∑s≤t(∆X(s))2 <∞.

It shall be stressed that [X, X](t) is a random process, as is shown by the following examples.

Example 2.1 (Quadratic variation of a continuous Lévy process). Let X be a Lévy process with a
generating triplet (θ,σ2, 0), i.e. X(t) = θt + σW (t), then the quadratic variation is given by σ2t.

Example 2.2 (Quadratic variation of a pure jump Lévy process). Let X be a Lévy process with a
generating triplet (θ, 0,ν), i.e. X(t) = θt + J(t), where J(t) = ∑N(t)

k=1 ξk is a compound Poisson process,
N(t) is a counting process, ξk denotes jump size, N(t) ⊥ ξk, then the quadratic variation is given by

[X, X](t) = N(t)∑
k=1
∣ξk ∣2 = ∑

s∈[0,t]
∣ξk ∣2 = ∑

s∈[0,t]
∣∆X(s)∣2

More generally, it is not hard to show that the same formula holds for every finite variation process
X:
Remark 2.2. If X is a process of finite variation, then the quadratic variation is given by

[X, X](t) = ∑
s∈[0,t]

∣∆X(s)∣2

Example 2.3 (Quadratic variation of a general Lévy process). Let X be a Lévy process with a gener-
ating triplet (θ,σ2,ν), i.e. X(t) = θt + σW (t) + J(t), then the quadratic variation is given by

[X, X](t) = σ2t + ∑
0<s<t

∣∆X(s)∣2 = σ2t +∫ t

0 ∫R z2NX(ds, dz)
Let’s now consider the case when a semimartingale X has jumps. First, define jumps as the difference

∆X(t) =X(t) −X(t−)
Note that at the jump time the value of the Itô integral increases by the value of the integrand before
the jump multiplied by the jump size of the integrator. That is

∆Iζ,X(t) = Iζ,X(t) − Iζ,X(t−) = ζ(t−)∆X(t) ∀ t ∈ [0,∞)
Notice that when describing the jump part of Lévy processes, the sample paths of the process may not
always be of finite variation (which is never the case, when considering a process containing a diffusion

7See Protter (2005) p.70.
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component). Hence, one needs to consider quadratic variation of the process to perform a change of
variable. The following defines quadratic variation.
Consider a pure jump process of bounded variation, X. Here X need not be a Lévy process. We can
write

X(t) =X(0) +∑
s≤t

(X(s) −X(s−)).
So, X has no continuous component and the value of the process equals to its initial value plus the sum
of its jumps. Now consider, f(X(t)) for some real-valued function, f . Then, f(X(t)) is also a pure
jump process of bounded variation, and

f(X(t)) = f(X(0)) +∑
s≤t

(f(X(s)) − f(X(s−)))
This is just Itô lemma for the pure jump case:

df(X(t)) = f(X(t)) − f(X(t−)).

Definition 2.11 (Quadratic covariation). Given two semimatingales X and Y , denoted [X, Y ] is the
semimartingale defined by

[X, Y ](t) =X(t)Y (t) −X(0)Y (0) −∫ t

0
X(s−)dY (s) −∫ t

0
Y (s−)dX(s) (2.22)

where pn = (tn
0 = 0 < tn

1 < ... < tn
n+1 = T ) is a sequence of partition of [0, T ] such that

∣pn∣ = supk ∣tn
k − tn

k−1∣→ 0 as n→∞
Proposition 2.13 (Itô product rule for Semimartingales). If X, Y are semimartingales then

X(t)Y (t) =X(0)Y (0) +∫ t

0
X(s−)dY (s) +∫ t

0
Y (s−)dX(s) + [X, Y ](t) (2.23)

Proof. Define quadratic covariation as a limit over an increasingly fine partition of [0, t]
[X, Y ](t) = lim

n→∞
n−1∑
k=0
(X(tk+1) −X(tk))(Y (tk+1) − Y (tk))

= lim
n→∞∑(X(tk+1)Y (tk+1) −X(tk+1)Y (tk) −X(tk)Y (tk+1) +X(tk)Y (tk))
= lim

n→∞∑(X(tk+1)Y (tk+1)) −∑(X(tk)(Y (tk+1) − Y (tk)) −∑(Y (tk)(X(tk+1) −X(tk))
(2.24)

=X(t)Y (t) −X(0)Y (0) −∫ t

0
X(s−)dY (s) −∫ t

0
Y (s−)dX(s) (2.25)

Note that last two sums in equation (2.24) converge to the Itô integral, that is,

∑(X(tk)(Y (tk+1) − Y (tk)) n→∞→ ∫ t

0
X(s−)dY (s)

∑(Y (tk)(X(tk+1) −X(tk)) n→∞→ ∫ t

0
Y (s−)dXs

Hence
X(t)Y (t) =X(0)Y (0) +∫ t

0
X(s−)dY (s) +∫ t

0
Y (s−)dX(s)
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Example 2.4 (Quadratic covariation of correlated Brownian motions). If B(1)(t) = σ1W (1)(t) and
B(2)(t) = σ2W (2)(t), where W (1), W (2) are standard Wiener processes with correlation ρ, then

[B(1), B(2)](t) = ρσ1σ2t

Definition 2.12 (Itô formula for Semimartingales). Let X be a semimartingale, and f = f(x, t) ∈
C2,1(R). Then,

df(X(t), t) = fx(t, X(t))dX(t) + ft(t, X(t))dt

+ 1
2fxx(t, X(t))d[X, X]c(t)
+ f(t, X(t)) − f(t, X(t−)) − fx(t, X(t−))(X(t) −X(t−))

Where Xc is the continuous part (or equivalently the continuous martingale part) of X. In integral
form, this becomes,

f(Xt, t) = f(0, X(0)) +∫ t

0
fx(s, X(s−))dXs +∫ t

0
fs(s, X(s))ds

+ 1
2fxx(s, X(s))d[X, X]c(s)
+∑

s≤t

(f(s, X(s)) − f(s, X(s−)) − fx(s, X(s−))(∆X(s))) (2.26)

2.6.2 Lévy processes
In this subsection, we briefly introduce the notion of Jump Measure [20]. It appears to be quite
technical. However, it is useful in the sense that it helps us to perform many computations. Define the
jump of Lévy process L(t) as

∆L(t) ∶= L(t) −L(t−)
Let R0 ∶= R/{0} and let B(R0) be the σ-algelbra generated by the family of all Borel subsets V ⊂ R,
such that V̄ ⊂ R0. If V ∈ B(R0) and t > 0, we define the number of jumps of size ∆L(s) ∈ V for any s

in 0 ≤ s ≤ t. Since the paths of L

N(t, V ) ∶= ∑
0≤s≤t

IV (∆L(s)) (2.27)

that is, the number of jumps of size ∆L(s) ∈ V for any s in 0 ≤ s ≤ t. Since the paths of L are càdlàg we
see that N(t, V ) <∞ for all V ∈ B(R0) with V̄ ⊂ R0; see, e.g. [74]. Moreover, equation (2.27) defines a
Poisson random measure N on B(0,∞) ×B(R0) in a natural way:

(a, b] × V !→ N(b, V ) −N(a, V ), 0 < a ≤ b, V ∈ B(R0)
The expression in equation (2.27) is called the jump measure of L. Its differential form is denoted by
N(dt, dx), t > 0, x ∈ R0. Hence the respective Lévy measure ν of L is defined by

ν(V ) ∶= E(N(1, V )), V ∈ B(R0) (2.28)

Note that ν need not to be a finite measure but it always satisfies

∫R0
(1 ∧ x2)ν(dx) <∞
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Since the sum of small jump ∑s≤t ∆L(s)I{∣∆L(s)∣ ≤ 1} does not converge in general (infinite many small
jumps), so we need to force this sum to converge by compensating it. Hence we define the compensated
jump measure Ñ as

Ñ(dt, dx) ∶= N(dt, dx) − ν(dx)dt (2.29)

It is known that every Lévy process can be represented as a compound Poisson process in some way. As
we have seen previously, every Lévy process can be represented with a continuation of a constant trend,
a scaled Wiener process, and some jump process with stationary independent increments, independent
of the Wiener process [78; 66]. If the number of jumps in every finite interval is almost surely finite,
then the pure-jump component is a compound Poisson process. This criterion allows us to construct
geometric Lévy process based models (as we will see shortly), not only ones similar to jump-diffusion,
but also processes with an infinite number of jumps in finite intervals. We now formalise this idea into
the following

Theorem 2.14 (Lévy-Itô decomposition theorem). Let L = {L(t), t ≥ 0} be a Lévy process and ν its
Lévy measure. L can be decomposed into

L = L(0) +L(1) +L(2) +L(3)

where L(0) is an affine (linear) function, L(1) is a scaled Wiener process, L(2) is a compound Poisson
process with jump size smaller than 1. L(3) is a Lévy process with jump sizes smaller than 1. The
processes L(i) are independent of each other. More precisely,

L(t) = θt + σW (t) +Xcpp(t) + lim
ϵ→0

X̃ϵ(t)
where

Xcpp(t) = ∫ t

0 ∫{∣x∣≥1} xN(ds, dx) = ∣∆X(s)∣≥1∑
s∈[0,t]

∆X(s) = ∑
s∈(0,t]

∆X(s)I{∣∆X(s)∣ ≥ 1} (2.30)

X̃ϵ(t) = ∫ t

0 ∫ϵ≤∣x∣<1
xÑ(ds, dx) = ϵ≤∣∆X(s)∣<1∑

s∈(0,t]
∆X(s) = ∑

s∈[0,t]
∆X(s)I{ϵ ≤ ∣∆X(s)∣ < 1} (2.31)

Then L, admits the following integral representation in terms of the jump measure N(ds, dx)
L(t) = θt + σW (t) + ∣∆X(s)∣≥1∑

s∈(0,t]
∆X(s) + ϵ≤∣∆X(s)∣<1∑

s∈(0,t]
∆X(s) (2.32a)

L(t) = θt + σWt +∫ t

0 ∫∣x∣≥1
xN(ds, dx) +∫ t

0 ∫∣x∣<1
xÑ(ds, dx) (2.32b)

for some constants θ,σ ∈ R. Here W = {W (t), t ≥ 0}, W (0) = 0, is a standard Wiener process.

The process Xcpp is a compound Poisson process, the process X̃ϵ is a compensated compound Poisson
process (See Appendix A, proposition A.6 for definition), which is a martingale. With the aid of the
notion of Jump measure and notation introduce in equation (2.28), one can express equation (2.32a) as
equation (2.32b). Notice that ∫ t

0 ∫{ϵ≤∣x∣<1} xN(ds, dx) and ∫ t
0 ∫{ϵ≤∣x∣<1} xν(dx)ds are well defined outside

0. However, these quantities do not converge as ϵ tends to 0. Intuitively, the term ∫ t
0 ∫∣x∣<1 xÑ(ds, dx)

could be thought of as small jumps that dictate the day-to-day fluctuation of a stock price. On the
other hand, the large jumps are captured by the term ∫ t

0 ∫∣x∣≥1 xN(ds, dx) that describe large stock price
movement caused by extreme market shock, such as terrorist attack and earthquakes. In particular, we
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see that if the Lévy process has continuous trajectories, then it is of the form which is familiar to us

L(t) = θt + σW (t), t ≥ 0

It could be proven if
E(∣L(t)∣p) <∞ for some p ≥ 1

then
∫∣x∣≥1

∣x∣pν(dx) <∞.

In particular, take p = 2, by assuming
E(∣L(t)∣2) <∞ (2.33)

We have
∫∣x∣≥1

∣x∣2ν(dx) <∞.

Proposition 2.15. Let {L(t), t ≥ 0} be a compound Poisson process with intensity 1. The jump measure
NL is a Poisson random measure on R × [0,∞] with intensity measure N(dx × dt) = ν(dx)dt

Apply proposition 2.15, equation (2.32b) becomes the celebrated Itô decomposition of Lévy process.

L(t) = θt + σW (t) +∫ t

0 ∫∣x∣≥1
xν(dx)ds +∫ t

0 ∫∣x∣<1
xÑ(ds, dx) (2.34)

When σ = 0, the diffusion term vanishes and we obtain a pure jump Lévy process.
From now on, we assume equation (2.33) holds and the Lévy process X is represented as equation (2.34).
Note that one can express equation (2.34) in a stochastic integral form (so-called Itô Lévy process)

L(t) = L(0) +∫ t

0
θds +∫ t

0
σdW (s) +∫ t

0 ∫∣x∣<1
xÑ(ds, dx) +∫ t

0 ∫∣x∣≥1
xν(dx)ds (2.35)

Apply proposition 2.15 and equation (2.35) becomes

L(t) = L(0) +∫ t

0
θds +∫ t

0
σdW (s) +∫ t

0 ∫∣x∣<1
xÑ(ds, dx) +∫ t

0 ∫∣x∣≥1
N(dx, ds) (2.36)

And in the equivalent short-hand differential notation is

dL(t) = θdt + σdW (t) +∫∣x∣<1
xÑ(dt, dx) +∫∣x∣≥1

xN(dt, ds) (2.37)

The Lévy process is semi-martingale, hence the sum of squared jumps is finite, i.e.

∑
0<s<t

(∆L(s))2 <∞
The following result is the basic building block in studying stochastic calculus for Lévy processes. This
is the Itô Lévy formulae. We present two versions of this formulae. The first version stands from the
first principle, [15], while the the second version makes use of random measures [20].

Theorem 2.16 (Lévy Itô formula 1). Let L = {L(t), t ≥ 0} be the Itô-Lévy process with given by equation
(2.36) and let f ∶ (0,∞) ×R!→ R be a C2,1 function and define

Y (t) ∶= f(t, L(t)), t ≥ 0
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Then the process Y = {Y (t), t ≥ 0} is also an Itô Lévy process and its solution is given by

Y (t) = f(t, L(t))
= f(0, L(0)) +∫ t

0
[fs(s, L(s)) + fx(s, L(s−))θ + 1

2fxx(s, L(s))σ2]ds

+∫ t

0
fx(s, L(s))σdW (s)

+∆L(s)≠0∑
s∈(0,t]

{f(s, L(s−) +∆L(s)) − f(s, L(s−)) −∆L(s)fx(s, L(s−))} (2.38)

and the respective differential form is given by

dY (t) = [ft(t, L(t)) + fx(t, L(t−))θ + 1
2fxx(t, L(t))σ2]dt

+ fx(t, L(t))σdW (t) + {f(t, L(t−) +∆L(t)) − f(t, L(t−)) −∆L(t)fx(t, L(t−))} (2.39)

With the aid of the notion of jump measure, the first version of Lévy Itô formula can be written
into a more elegant way.

Theorem 2.17 (Lévy Itô formula 2 ). Let L = {L(t), t ≥ 0} be the Itô-Lévy process with given by
equation (2.36) and let f ∶ (0,∞) ×R!→ R be a C2,1 function and define

Y (t) ∶= f(t, L(t)), t ≥ 0

Then the process Y = {Y (t), t ≥ 0} is also an Itô Lévy process and its solution is given by

Y (t) = f(t, L(t))
= f(0, L(0)) +∫ t

0
[fs(s, L(s)) + fx(s, L(s−))θ + 1

2fxx(s, L(s))σ2]ds

+∫ t

0 ∫R0
fx(s, L(s))σdW (s) +∫ t

0
(f(s, x +L(s−)) − f(s, L(s−)))ÑL(ds, dx)

+∫ t

0 ∫R0
(f(s, x +L(s)) − f(s, L(s)) − xfx(s, L(s)))ν(dx)ds (2.40)

and the respective differential form is given by

dY (t) = [ft(t, L(t)) + fx(t, L(t−))θ + 1
2fxx(t, L(t))σ2]dt

+ fx(t, L(t))σdWt +∫R0
(f(t, x +L(t−)) − f(t, L(t−)))Ñ(dt, dx)

+∫R0
(t, f(L(t) + x) − f(t, L(t)) − xfx(t, L(t)))ν(dx)dt (2.41)

The two representations of the Lévy Itô formulae are equivalent. The reason is that Lévy process is
a semi-martingale that possesses the following property:

∑
s∈(0,t]

(∆X(s))2 <∞
In equation (2.38), due to the semimartingale property, if function f(⋅) is a twice integrable in x, then,

∣f(s, X(s−) +∆X(s)) − f(s, X(s−)) −∆X(s)fx(s, X(s−))∣ ≤ c(∆X(s))2
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Hence, the series

∑
s∈(0,t]

f(s, X(s−) +∆X(s)) − f(s, X(s−) −∆X(s)fx(X(s−)))
converges.

2.7 Geometric Lévy processes
Starting from the well-known geometric Brownian motion with the following explicit form:

S(t) = S(0)e(µ− 1
2σ

2)t+σW (t)

It is quite natural to replace the Wiener process with a more general Lévy process L(t) and consider
the process

S(t) = S(0)eL(t)

The processes of this kind are so-called geometric Lévy processes and can be viewed as a generalisation
of the Black Scholes model. As we will see, the study of exponential and stochastic exponential is
essential in the sense that it allows us to construct the model of interest that describes processes driven
by market information. We start with the ordinary exponential of a Lévy process. In the classical
diffusion model, the evolution of the stock price is described by the exponential of a Wiener process
with drift:

S(t) = S(0)eL0(t) (2.42)

where

L0(t) =mt + σW (t)
dL0(t) =mdt + σdW (t)

Apply Itô formula to S(t), we have, Then

dS(t) = S(t)(mdt + σdW (t) + 1
2d[L0, L0](t))

= S(t)(mdt + σdW (t) + 1
2σ

2dt)
= S(t)((m + 1

2σ
2)dt + σdW (t)) (2.43)

Integrating both sides of equation (2.43),

∫ t

0
dS(u) = S(t) − S(0) +∫ t

0
S(u)(m + 1

2σ
2)du + σ∫ t

0
S(u)dW (u)

$⇒ S(t) = S(0) +∫ t

0
S(u)(m + σ2

2 )du + σdW (u)
= S(0) +∫ t

0
S(u)dL1(u) (2.44)

where L1(u) = (m + σ2

2 )t + σW (t) is another Wiener process with drift. Replacing L0(t) in the process
S(t) itself (2.42) , one can obtain geometric Lévy models

S(t) = S(0)eL(t), where L(t) is a Lévy process
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Replacing L1(t) by a Lévy process in equation (2.44) we obtain the stochastic exponential.8 We see
that this process has a solution of the form

S(t) = S(0) +∫ t

0
S(u−)dL(u)

that satisfies a SDE of the same form as the classical ODE for the exponential function.

2.7.1 Ordinary Exponential for Lévy process
Proposition 2.18. Let ∆X(t) =X(t)−X(t−) be the jump measure of a Lévy process X(t), NX be the
random measure of X as defined in equation (2.27), the following holds,

∑
0≤s≤t;∆X(s)

{(f(X(s−) +∆X(s)) − f(X(s−))} = ∫ t

0 ∫R{(f(X(s−) + y − f(X(s−))}NX(ds, dy)
Let {L(t), t ≥ 0} represents a Lévy process with jump measure NL as follows:

L(t) = θt + σW (t) + ∑
s∈[0,t]

∆X(s) (2.45)

In differential form, equation (2.45) can be expressed as follows

dL(t) = θdt + σdW (t) +∆X(t)
Applying Itô lemma (2.38 and 2.40) to Yt = eLt . We obtain,

Y (t) = f(t, L(t))
= f(0, L(0)) +∫ t

0
[fs(s, L(s)) + fx(s, L(s))θ + 1

2fxx(s, L(s))σ2]ds

+∫ t

0
fx(s, L(s))σdW (t)

+∆L(s)≠0∑
s∈[0,t]

{f(s, L(s−) +∆L(s)) − f(s, L(s−)) −∆L(s)fx(s, L(s−))}
= 1 +∫ t

0
Y (s)(1 + θ + 1

2σ
2)ds +∫ t

0
Y (s)σdW (t)

+∆L(s)≠0∑
s∈[0,t]

{eL(s−)+∆L(s) − eL(s−) −∆L(s)eL(s−)}
= 1 +∫ t

0
Y (s−)(1 + θ + 1

2σ
2)ds +∫ t

0
Y (s−)σdW (t)

+∫ t

0 ∫R0
Y (s(−))(ex − 1)ÑL(ds, dx) +∫ t

0 ∫R0
(ex − 1 − xI{∣z∣ ≤ 1})ν(dx)

In some Mathematical Finance applications, i.e. when constructing a trading strategy, it is often useful
to split the stochastic integral like Y (t) into a deterministic part and a martingale part. To summarise,
we have the following proposition.

Proposition 2.19 (Exponential of a Lévy process). Let {L(t), t ≥ 0} be a Lévy process with generating
a triplet (θ,σ2,ν) satisfying

∫∣y∣≥1
eyν(dy) <∞

8The stochastic exponential is also called Doléan-Dade exponential , which is first introduced by French female math-
ematician Doléan-Dade [21].

32



Then Y (t) = exp(L(t)) is a semimartingale that can be decomposed Y (t) = M(t) + A(t) where the
martingale part is given by

M(t) = 1 +∫ t

0
Y (s−)σdW (s) +∫[0,t]×R Y (s−)(ex − 1)ÑL(ds, dx) (2.46)

and the continuous finite variation drift part is given be

A(t) = ∫ t

0
Y (s−)(1 + θ + σ2

2 +∫R(ex − 1 − xI{∣x∣ ≤ 1})ν(dx))ds (2.47)

{Y (t)} is a martingale if and only if

1 + θ + σ2

2 +∫R(ex − 1 − xI{∣x∣ ≤ 1})ν(dx) = 0 (2.48)

2.7.2 Stochastic Exponential and Geometric Lévy process
Let L = {L(t), t ≥ 0} be a real-valued Lévy process with a generating triplet (θ,σ2,ν), L(0) = 0. There
exists a unique càdlàg process Y = {Y (t), t ≥ 0} such that

dY (t) = Y (t−)dL(t), Y (0) = 1 (2.49)

Y is given by
Y (t) = eL(t)− 1

2 [L,L](t) ∏
0≤s≤t

(1 +∆L(s))e−∆L(s)+ 1
2 (∆L(s))2 (2.50)

or

Y (t) = eL(t)− 1
2 [L,L](t)c ∏

0≤s≤t

(1 +∆L(s))e−∆L(s) (2.51)

Since [L, L](t) = [L, L]c(t) + ∑
0≤s≤t

(∆L(s))2

The Doléan exponential9 of L is denoted by E(L). Equation (2.51) is used for the rest of this thesis.

Proof. The proof of uniqueness is omitted (See Lipster & Shiryayev (1989) [45] for details). Let

U(t) = L(t) − 1
2 [L, L]c(t), V (t) =∏

s≤t

(1 +∆L(s))e−∆L(s)

Step 1 Show the infinite product V (t) converges. In other words, we prove V (t) is well-defined and is
of finite variation.

V (t) = ∏
s∈(0,t]

(1 +∆L(s))I{∆L(s)∣ < 1/2}e−∆L(s)

=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>?>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>@
V (1)(t)

∏
s∈(0,t]

(1 +∆L(s))I{∆L(s)∣ > 1/2}e−∆L(s)

=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>?>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>@
V (2)(t)

(2.52)

Although the product is taken s ≤ t, there are only a finite number of s such that ∣∆L(s)∣ ≥ 1/2 on each
compact interval10. In other words, the second product V (2) contains a finite number of factors and so

9This definition can be found in Appendix A under Mathematic Preliminary section
10A compact interval on R is simply a closed interval on R.
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it is of finite variation. Thus it suffices to show the first product V (1)(t) is of finite variation. Taking
the logarithm of V 1(t) we have

ln(V 1(t)) =∑
s≤t

{(ln(1 +∆L(s)I{∣∆L(s)∣ ≤ 1/2}) −∆L(s)I{∣∆L(s)∣ ≤ 1/2}}
This series converge absolutely and almost surely since

∑
s∈(s,t]

(∆L(s)I{∣∆L(s)∣ < 1/2})2 ≤ [L, L](t) <∞ a.s.

because ∣ ln(1 + x) − x∣ ≤ x2 when ∣x∣ < 1/2. Clearly, ln(V 1(t)) is a process with finite variation sample
paths. This ensures V (t) exist and has trajectories of finite variation.
Step 2 Show Y (t) is a solution. Set L̂(t) = L(t) − 1

2 [L, L]c(t) and let f(x, y) = yex. Then Y (t) =
f(Û(t), V (t)), where U, V are defined previously. Now apply Itô formula we have

Y (t) = 1 +∫ t

0
Y (s−)dU(s) +∫ t

0
eU(s−)dV (s) + 1

2 ∫
t

0
Y (s−)d[U, U]c(s)

+ ∑
s∈(0,t]

(Y (s) − Y (s−) − Y (s−)∆U(s) − eU(s−)∆V (s))
= ∫ t

0
Y (s−)dL(s) − 1

2 ∫
t

0
Y (s−)d[L, L]c(s) +∫ t

0
eU(s−)dV (s)

+ 1
2 ∫

t

0
Y (s−)d[L, L]c(s) + ∑

s∈(0,t]
(Y (s) − Y (s−) − Y (s−)∆U(s) − eU(s) ∗∆V (s)) (2.53)

since [U, V ]c = [V, V ]c = 0. S is a pure jump process. Hence ∫ t
0 eU(s−)dS(s) = ∑s∈(0,t] eU(s−)∆V (s).

Also Y (s) = Y (s−)(1 +∆L(s)), and Y (s−)∆U(s) = Y (s−)∆L(s), so the last sum in equation (2.53)
becomes

∑
s∈(0,t]

(Y (s−)(+∆L(s))) − Y (s−) − Y (s−)∆L(s) − eU(s−)

After some cancellation of terms we have

Y (t) = 1 +∫ t

0
Y (s−)dL(s)

Y is called a stochastic exponential or Doléan exponential of L and denoted by Y = E(L). Note
that, one could define it for any arbitrary semimartingale that not necessarily a Lévy process. However,
it should be noted that the proof does not use the independent or stationary increment argument which
we usually use for Lévy processes.

Equation (2.50) gives a general formula for E(L). The formulae simplifies when the Lévy process L

is continuous. Indeed, suppose L is a continuous semimartingale with L(0) = 0. Then

E(L)(t) = exp{L(t) − 1
2 [L, L](t)}

Where the semimartingale L is a transformation of a Wiener process W = {W (t), t ≥ 0}, scaled by some
constant σ. Since σW has no jump we have

σW (t) = exp{λW (t) − σ2

2 [W, W ](t)} = exp{σW (t) − σ2

2 t}
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Furthermore, since E(σW )(t) = 1 + σ ∫ t
0 E(σW )(s−)dW (s), we see that E(σW )(t) = eσW (t)−σ2

2 t is a
continuous martingale. Some authors prefer to use the term “exponential martingale”. The process
E(σW ) is in fact the well-known geometric Brownian motion.

2.7.3 Relation between ordinary and stochastic exponential
It is clear from the previous result that the ordinary exponential and the stochastic exponential are
essentially different: they do not correspond to the same stochastic process. Observe from equation
(2.50), the stochastic exponential, E(L) is strictly positive if and only if the jump of L, i.e. ∆L > −1.
In contrast, the ordinary exponential, expL is clearly a strictly positive process. Hence, naturally, one
may think which of the two processes is more suitable to model stock prices or returns. Remarkably
Goll and Kallen [35] shows that the two approaches (modelling via an ordinary exponential and via a
stochastic exponential) are equivalent. If Y > 0 is the stochastic exponential of a Lévy process then it is
also the ordinary exponential of another Lévy process. The reverse is also true: If there is some process
X which is the ordinary exponential of a Lévy process Y , then there exist another Lévy process Z such
that the Lévy process X is the stochastic exponential of Z. Therefore, the two different operations,
although produce different objects when applied to the same Lévy process, end up giving us the same
class of positive processes. In continuous time, the previous argument is quite intuitive. Recall the
previous example L(t) = σW and the ordinary exponential and the stochastic exponential are given
respectively by

Y 1(t) = eσW (t) and Y 2(t) = eσW−σ2
2 t

We see that the stochastic exponential of a Lévy process (the Wiener process with constant coefficient)
is indeed the ordinary exponential of another Lévy process (the Wiener process with constant coefficient
and affine drift). In short, the idea is: If some Y > 0 is the stochastic exponential of a Lévy process L,
then it is also the ordinary exponential of another Lévy process L̃. More precisely, we have the following
[15]:

Proposition 2.20 (Relation between ordinary and stochastic exponential).

1. Let = {L(t), t ≥ 0} be a real valued Lévy process with a generating triplet (θ,σ2,ν) and Y = E(L)
its stochastic exponential. If L > 0 a.s. then there exist another Lévy process {L̃t, t ≥ 0} such that
Yt = eL̃t where

L̃t = ln Yt = Lt − σ2t

2 + ∑s∈(0,t]
ln(1 +∆Ls) −∆Ls (2.54)

Its generating triplet (θ̃, σ̃2, ν̃) is given by:

σ̃ = σ,

ν̃(A) = ν(x ∶ ln(1 + x) ∈ A) = ∫ IA(ln(1 + x))ν(dx),
θ̃ = θ − σ2

2 +∫ ν(dx)ln(1 + x)I[−1,1](ln(1 + x)) − xI[−1,1](x) (2.55)

2. Let L̃, t ≥ 0 be a real valued Lévy process with generating triplet (θ̃, σ̃, ν̃) and St = exp(Lt) its exponen-
tial. Then there exists a Lévy process L, t ≥ 0 such that S is the stochastic exponential of L ∶ S = E(L)
where

Lt = L̃t + σ2t

2 + ∑s∈(0,t]
(e∆L(s) − 1 −∆L(s)) (2.56)
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Its generating triplet (θ,σ2,ν) of L is given by:

σ = σ̃,

ν(A) = ν̃(x ∶ ex − 1 ∈ A) = ∫ IA(ex − 1)ν̃(dx),
θ = θ̃ + σ̃2

2 +∫ ν̃(dx)(ex − 1)I[−1,1](ln(1 + x)) − xI[−1,1](x) (2.57)

Proof. See [15].

A very important property of the stochastic exponential is the martingale invariance property.
Basically it tells us that any stochastic exponential of a Lévy process is again a martingale. Nevertheless,
it is formalised as follows:

Proposition 2.21. If (X)t≥0 is a Lévy process and a martingale, then its stochastic exponential Z =
E(X) is also a martingale.

Proof. See [15].

Example 2.5 (Generalized geometric Lévy process). [20] Consider the one-dimensional stochastic
differential equation for the cáglád process S = {S(t), t ≥ 0}:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dS(t) = S(t−)[θdt + σdW (t) + ∫R0

xÑ(dt, dx)], t > 0
S(0) = S0 > 0

Assuming all the technical conditions hold, we claim that the solution of example 2.5 is

S(t) = S0 exp{X(t)}, t ≥ 0 (2.58)

where

X(t) = ∫ t

0
(θ − 1

2σ
2 +∫R0

(log(1 + x) − x)ν(dx))ds

∫ t

0
βdW (s) +∫ t

0 ∫R0
log(1 + x)Ñ(ds, dx) (2.59)

To visualise this we apply the one-dimensional Itô formula (2.41) to Y (t) = f(t, X(t)), t ≥ 0, with
f(t, x) = S0ex and X(t), as given in (2.59). Then we obtain

dY (t) = S0eX(t)[(θ − 1
2σ

2 +∫R0
[log(1 + x) − x]ν(dx))dt] + βdW (t)

+ S0eX(t) 1
2σ

2dt +∫R0
S0[eX(t)+log(1+x) − eX(t) − eX(t) log(1 + x)]ν(dx)dt

∫R0
S0(eX(t−)+log(1+x) − eX(t−))Ñ(dt, dx)

= Y (t−)(θdt + σdW (t) +∫R0
xÑ(dt, dx)) (2.60)

as required.

2.7.4 Change of measure and absolute continuity for Lévy processes
The Girsanov theorem is a fundamental concept in the general theory of stochastic analysis. It also has
important applications, for example in Mathematical Finance. When pricing a contingent claim traded
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in the financial market, the probability measure we use is usually different from the statistical measure
we observe. In probability theory, Girsanov theorem tells us how stochastic processes change under
change in measure. Therefore, it is the key theorem for the classical Black-Scholes model in connecting
the physical measure with the risk-neutral measure. Girsanov theorem simply says that if we change
the drift coefficient of a given Itô process with a nondegenerate drifted diffusion, then the law of the
process will not change in its form. Indeed, the law of the new process will be absolutely continuous
w.r.t. the law of the original process and the Radon-Nikodym derivative can be computed explicitly
[63]. In this section we first recall some basic facts on absolute continuity and equivalence of probability
measure, then describe the change of measure in the case of Brownian motion, finally we present the
analogous Girsanov theorem for Lévy process.

Definition 2.13. Given two probability measures P and Q defined on the same σ-algelbra F ,

i P is said to be absolutely continuous with respect to Q, or dominated by Q if P(A) = 0 for every
set A for which Q(A) = 0, for all A ∈ F .

ii if P is absolutely continuous with respect to Q and Q is absolutely continuous with respect to P,
then we call P and Q are equivalent measures, denoted P ∼ Q

In the context of financial modelling, the equivalence of measures is important. This is due to the
fact that equivalent measures have the same a.s. and null sets, hence by changing between measures,
we do not alter the possible states in the economy, we only alter the probabilities assigned to each state.
By the First Theorem of Asset Pricing, this ensures the fairness of prices under changes of measures
and changes of numeraires.

Theorem 2.22. Let W (t) be a Brownian motion on the filtered probability space (Ω,F ,F,P), and let
λ(t) be a adapted process11 satisfying Novikov’s condition,

E(exp(1
2 ∫

T

0
∣λt∣2dt)) <∞

Moreover let ET (⋅) be the Doléan exponential. Define an equivalent measure Q by

ηt = dQ
dP
∣
F(t)
= Et (∫ ⋅

0
λsdWs) P a.s.

= exp(∫ t

0
λsdWs − 1

2 ∫
t

0
∣λs∣2ds) ∀t ∈ [0, T ]

as an exponential martingale with respect to the natural Brownian filtration F under the probability
measure P
The relation

Q(A) = ∫ ⋅
A
ηT (ω)dP(ω),⇐⇒ dQ

dP
∣
FT

= ηT

dQ
dP
∣
FT

= ηT

defines a probability measure Q on F which is equivalent to P. Under the probability measure Q, the
11λt must satisfy condition to ensure the Radon Nikodym derivative is a martingale
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process

WQ
t =Wt −∫ t

0
λsds, t ∈ [0, T ] is a standard B.M. under Q

i.e.

dWQ
t = dWt − λtdt

is a standard Brownian motion under measure Q.
The process WQ is adapted to the filtration F.
The probability measure P is called an equivalent martingale measure.

The Girsanov theorem for Brownian motion simply states that by changing the drift of a given
Brownian motion, one can find an equivalent measure under which the new process is again a Brownian
motion. The law of the new Brownian motion will be absolute continuous w.r.t. the law of the original
Brownian motion, and the Radom-Nikodym derivative can be computed explicitly. The measure change
results between two Lévy processes [15] are similar to what we have just seen. We consider the classic
Girsanov theorem as a special case of the following theorem.

Theorem 2.23 (Generalised Girsanov). Let X = {X(t), t ≥ 0} be a real-valued Lévy process on (Ω,F ,Q)
and on (Ω,F ,P) with respective generating triplets (θQ,σ2

Q,νQ) and (θP,σ2
P,νP). Then Q∣F(t) << P∣F(t)

for all t ∈ [0, T∞] iff the following conditions hold:

1. They have the same diffusion component: σ2
Q = σ2

P ∶= σ2

2. νQ ≪ νP

3. The Lévy measure are equivalent with

∫ ∞
−∞ (eη(x)/2 − 1)2νP(dx) = ∫ ∞

−∞ (
√
η(x) − 1)νP(dx) <∞

4. If σ = 0 then we must in addition have θQ −θP = ∫∣x∣≤1 x(η(x)−1)νP(dx) Furthermore, when P and
Q are equivalent, the Radon-Nikodym derivative is

dQ
dP
∣
Ft

= eU(t)

where

U(t) = λLc(t) − λ2σ2t

2 − λθt + lim
ϵ↘0

⎛
⎝ ∑

s≤t,∣δL(s)∣>ϵ
η(∆L(s)) − t∫∣x∣>ϵ(eη(x) − 1)ν(dx)⎞⎠

Note, Lc(t) is the continuous part of L(t),λ ∈ R is chosen such that

θQ − θP −∫∣x∣≤1
x(η(x) − 1)νP(dx) = σ2

Pλ if σP > 0, and λ = 0 if σ = 0

U(t) is a Lévy process with the generating triplet (θU ,σU ,νU) given by

σU = σ2
Pλ

2,νU = νPη−1θU = −1
2σ

2
Pλ

2 −∫ ∞
−∞ (ey − 1 − yI{∣y∣≤1})νη−1(dy)
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The above result suggests that the change of measure can be done in a more flexible manner while
preserving the equivalence of measure under Lévy process. However, if the diffusion term is absent,
then the drift is freely changed. Under such circumstances, one may change the distribution of the jump
ν(dx). Hence changing measure under Lévy processes, one needs to find equivalent martingale measures
(E.M.M.). An E.M.M. Q is an absolutely continuous probability measure w.r.t. the original measure P
that makes the discounted price process a martingale. The pricing model being studied in this thesis:
the Geometric Lévy process model is an incomplete market model, we recognise that the option pricing
for such a model forces a move out of the traditional realm of arbitrage pricing into the domain of
equilibrium pricing, since there exists an infinite number of martingale measures under this model by
the Second Theorem of Asset Pricing. The choice of a suitable martingale measure is important for the
purpose of pricing option based on arbitrage theory. But fortunately, our setting allows us to solve the
pricing problem by utilising the classic version of Girsanov theorem. Nevertheless, the following are a
list of candidates for choosing a martingale measure for option pricing [55].

• Minimal Martingale Measure (MMM) (Föllmer-Schweizer(1991)[29])

• Variance Optimal Martingale Measure (VOMM) (Schweizer(1995)[77])

• Mean Correcting Martingale Measure (MCMM)

• Esscher Martingale Measure (ESMM) (Gerber-Shiu(1994),B-D-E-S(1996)[33])

• Minimal Entropy Martingale Measure (MEMM) (Miyahara(1996)[54], Frittelli(2000)[30], Miya-
hara & Novikov (2002)[56])

• Utility Based Martingale Measure (U-MM)

2.7.5 Geometric Lévy based pricing model: Basic notions
Now we turn our focus to the stock price model of this thesis: the geometric Lévy model. First, we
review the classical pricing model.
The famous Black-Scholes model

St = S0e(µ− 1
2σ

2)t+σWt

is a typical model for a complete market12. This model is an outstanding model based on its simplicity,
but it is well-known that in the real world, the market completeness is not usually satisfied. There is
abundant empirical evidence that financial price processes do not have Gaussian-distributed returns.
For example, the phenomenon of implied volatility smile in option markets suggests that the risk-neutral
returns are non-gaussian and leptokurtic. While the smile itself can be explained within a diffusion based
model with continuous paths, the fact that it becomes much more pronounced for short maturity options
clearly indicates the presence of jumps. From a market microstructure point of view, every price process
is essentially discrete. A continuous process such as Brownian motion is used as a proxy for the real
discrete observed process. Hence there is a need to introduce models to allow jump. Second, in diffusion-
based models, the law of returns for shorter maturity becomes more or less Gaussian law,whereas in
the real world, returns actually become less Gaussian as the time horizon becomes shorter. The third
argument is that jump processes correspond to genuinely incomplete market, whereas all diffusion-based
model are either complete or can be made complete with a small number of additional assets. Hence, we
need a model that takes into account the weakness of the traditional model. The geometric Lévy model

12The market is said to be complete if every contingent claim is attainable. A more precise definition can be found in
Appendix A, see A.8 the Second Theorem of Asset Pricing
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is one of them. This model is well suited to an incomplete market. A great advantage of the geometric
Lévy model is the mathematical tractability, which makes it possible to perform many computations
analytically and to derive useful results in a simple manner. This leads to an explosion of literature
on option pricing (including hedging) in geometric Lévy models in the late 90s and early 2000s, the
literature contains hundreds of research papers and several monographs to date. Now, let’s make this
more precise.
Suppose that in a filtered probability space (Ω,F ,F,P), a geometric Lévy process (GLP) is obtained
by replacing the Brownian motion with drift (continuous Lévy process) in the classical Black-Scholes
model of an asset price, by a Jump-type Lévy process [55]:

St = S0eLt (2.61)

where Lt is a Lévy process with a generating triplet (θ,σ2,ν(dx)). The price process St has the following
expression:

St = S0E(L̃)t
where E(L̃)t is the Doléans-Dade exponential of L̃t and a generating triplet L̃t, say (θ̃, σ̃2, ν̃(dx)) is

θ̃ = θ + 1
2σ

2 +∫ ((ex − 1)I{∣ex−1∣≤1} − xI{∣x∣<1})ν(dx) (2.62)

σ̃ = σ (2.63)
ν̃(dx) = (ν ○ (ex − 1)−1)(dx) (2.64)

that is ν̃(A) = ∫
A
(ex − 1)ν(dx)

and the log returns ln(St/S0) = Lt can be any Lévy process. This model fits quite well the empirical
distribution of the asset returns. However, pricing of vanilla options under these models is not as
simple as with diffusion-based models since the uniqueness of the equivalent martingale measure is not
preserved in most of the Lévy models. Thus, Lévy financial models lead to incomplete markets13 in
which there are infinitely many equivalent martingale measures and perfect hedges are unattainable. To
price options under these models, one needs to first choose a risk-neutral measure from the equivalent
martingale measures available. Several methods are available including Esscher transform, minimal
entropy measure and indifference pricing, which have already been mentioned.
By the First Fundamental Theorem of Asset Pricing (see appendix A, A.7 or [19]), a financial market
is arbitrage free if and only if there exist at least one risk neutral measure that is equivalence to the
original probability measure. In other words, there is no free lunch14 in the financial market if we can
find a probability measure Q, equivalent to P, such that the discounted price e−rtVt of all assets are
Q-local martingales. Q is called a risk-neutral probability. Hence the absence of arbitrage implies the
existence of probability Q ∼ P, such that eL is Q-local martingale. The following result shows that if
L is a Lévy process under P , one can always find an equivalence measure Q, under which L is still a
Lévy processes and eL is a martingale.

Theorem 2.24 (Absence of arbitrage in Geometric Lévy models). Let L = {L(t), t ≥ 0} be a Lévy
process on (Ω,F ,P) with a generating triplet (θ,σ2,ν). If the trajectories of L are not monotone, then
there exists a probability measure Q ∼ P such that under Q, L is a Lévy process and eL is a martingale.

13Incomplete markets refers to markets in which the number of Arrow Debreu securities is less than the number of
states of nature

14This means no profit can be made without taking risk. For a mathematical formulation, see theorem A.9 in appendix,
for a even more precise mathematical treatment, see [40].
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Q may be chosen in such a way that (L,Q) will have a generating triplet (θQ,σ2
Q,νQ)

Remark 2.3. Set Q ∼ P. It is important to note that a P Lévy process is not necessarily a Q Lévy
process. The class of Lévy process is not stable under a change of measure.

Proof. See theorem 33.1 and 33.2 in Sato (1999) [74].

Risk-neutral Geometric Lévy models Geometric Lévy models of type equation (2.61), where
L is a Lévy process with generating triplet (θ,σ2,ν), satisfying the condition that {eLt , t ≥ 0} is
a martingale, are called risk-neutral geometric Lévy models and can be parametrised by σ2 and ν

only: Q = Q(σ2,ν). Under a risk-neutral probability Q(σ2,ν) we can evaluate call option prices as the
discounted expected terminal payoffs:

CQ(σ2,ν)(T, K) = e−rTEQ(σ2,ν)((S(T ) −K)+) = e−rTEQ(σ2,ν)((S0erT+L(T ) −K)+) (2.65)

In this thesis, we chose to work with geometric Lévy process of the form equation (2.61), where the
Lévy process Lt = θt + σWt +XVG

t . The rationale is the following.
First, we chose to work with Lévy processes based on its tractability. It is true that there are

many models around (examples are stochastic volatility model, GARCH model), Brownian motion is
simple, but not good enough. So we need another model. Models based on Lévy process are reasonably
tractable. Computations that can be performed with Lévy process that cannot be performed under a
more general class of stochastic processes.

Second, we would like to preserve the simplicity of geometric Brownian motion. Having noted
that geometric Brownian motion is a special type of geometric Lévy process where the Lévy process is
continuous, i.e. Lt = θt + σWt. To incorporate jumps, we replace the continuous Lévy process with the
Jump-type Lévy process of the following form:

Lt = θt + σWt +XVG
t (2.66)

Third, the jumps are considered to be VG distributed. We were seeking a process that could best
described the behaviours of the jumps in the trajectories of the VWAP based on the criterions in Madan
and Seneta (1990) [48].

1. Long tailedness relative to the normal for daily returns, with returns over longer periods approaching
normality;

2. Finite moments of at least low orders;

3. Consistency with an underlying, continuous-time stochastic process, with independent and stationary
increments;

4. Extension to multivariate process with elliptical multivariate distributions that thereby maintain
validity of the capital asset pricing model.

There are four candidate distributions in modelling the jump component: the stable distribution [27; 49],
the Praetz t distribution [68], the compound Event model [69] and the VG distribution [48]. The stable
distribution does not possess finite moments of any order, hence it fails criterion two and three. The
Praetz t distribution fails criterion three as it is not possible to construct a stochastic process with the
criterion 3 because the sum of independent t variable is not a t-variable. The compound Event model15

15This is a model based on compound Poisson process with Gaussian-distributed jump size
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satisfies all four properties. If the compound Event model is used to model the jump component, then
the Lévy process becomes the well known Merton jump diffusions of the following form:

L(t) = θt + σWt +Xcpp
t

In this model, is that the diffusion part σWt is responsible for the usual fluctuations in the return series.
The jump part Xcpp

t = ∑Nt

k=1 ξk is a compound Poisson process with finite many jumps in every time
interval is responsible for the rare events. ξk is assumed to be Gaussian distributed. Some authors
favour this model as it is convenient for simulations and capable in capturing large jumps. Models of
this type also perform quite well for the purposes of volatility smile interpolation (See chapter 13 in
[15]). However, several weak points of these models are:

• Jumps are assumed to be rare events.

• Distribution of jump size is restricted to be Gaussian process.

• Close form probability density does not exist.

• Finite number of jumps in every time interval.

When considering incorporating jumps in the problem of VWAP options pricing, we expect a large
number of small jumps with occasional large move. Such features of jumps cannot be found in a merton
jump diffusions-type model. The jumps under such models are usually considered to be of low frequency
and high severity. This is one of the reason decomposition of the form as in equation (2.66) is often used
in non-life insurance to describe some particular types of claim processes [58]. Also, the jumps are not
necessarily to be rare events, they shall be the drivers of the price movement. In addition, close form
probability density is necessary to perform more computations. We were looking for a model that is less
restrictive and more realistic. The VG model is a subclass of pure jump processes with finite variation
and infinite activity, appears to be the a right candidate for our purpose. First, the assumption of
jumps are rare events is relaxed in the sense that the price process moves essentially by jumps. Second,
the distribution of jump size need not to be known in advance, it can arrive infinitely often in every
time interval. This is because, the VG model arises by evaluating a Brownian motion with drift at
independent random time given by a Gamma process. A gamma process is infinite divisible, this gives
rise to a Lévy process with infinite number of jumps in every time interval. Third, close form probability
density does exist, as we will discuss in Chapter 4. Hence, clearly, the VG process possesses all the
four properties described in [48]. In fact, one can show that the VG process is a limit of a particular
compound events models in which the arrival rate of the jumps approaches infinity.

Based on the discussion above, the VG process respects the intuition behind a Wiener process and
a compound Poisson process for the purpose of modelling stock prices in the sense that it balances
between the two processes. Implementation of a Geometric Lévy model with VG jumps can be viewed
as a bridge between a classical financial model and an insurance model. Nevertheless, the idea could
be made clearer when visualising the trajectories of VG process in Chapter 4.

2.7.6 Geometric Lévy based pricing model: Applications to Finance
2.7.6.1 Categories of Geometric Lévy process

Let’s now review several geometric Lévy models in the existing financial literature. These models are
used to describe the stock price evolution under both the historical (real-world) and the risk-neutral
probability measures, but under the risk neutral probability measure the drift parameter is fixed by
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satisfying the martingale criterion.

There are two main categories of financial models. The first category are so-called jump-diffusion
models. As the name suggests, the diffusion component must be present in such models. Under this
category, the model stock price consists of two processes, the diffusion-process which determines the
normal evolution of the price, and the fluctuation of price captured by a jump process. Here the
jumps represent extreme events-stock market crashes and large drawdowns. Such an evolution can be
represented by modelling log-prices as Lévy processes with a nonzero Gaussian component and a jump
component, which is a compound Poisson process with finitely many jumps in every time intervals

Zt = θt + σWt + Nt∑
k=1

ξk (2.67)

where {Nt, t ≥ 0} is the Poisson process counting the jumps of Z and ξk are i.i.d. random variables
that represent jump sizes. The first model of this type is the Merton model16 [50], which has been
mentioned previously. This model suggests that the jumps in the log-price Zt are assumed to be
Gaussian distributed: ξk ∼ N(a, δ2). In the risk-neutral setting the characteristic exponent of the log
stock price is represented as follows:

ψ(u) = −u2σ2

2 + λ (e−δ2 u2/2+iau − 1) − iu(σ2

2 + λ (e δ
2/2+a − 1)) (2.68)

The second model of this type is the Kou model [42]. Kou (2002) assumed the structure in equation
(2.67), but chose the jump distribution to be that of a two-sided exponential distribution. His choice
of jump distribution was motivated by the fact that analysis of first passage time problems become
analytically tractable which itself is important for the valuation of American put options. Under this
model, the jump size ξk is a mixture of exponential distribution, i.e. in the form

ν0(dx) = (c1λ+e−λ+xIx>0 + c2λ−e−λ−∣x∣Ix<0)dx (2.69)

with λ+ > 0,λ− > 0 controlling the decay of the tail distribution of the positive and negative jump sizes
and p ∈ [0, 1] representing the probability of an upward jump. The probability distribution of returns
in this model has semi-heavy (exponential) tails.

The jump sizes under the described jump diffusion types of models have known distribution, the
dynamical structure of the process are relative simple. One can easily simulate and apply Monte Carlo
methods in pricing financial derivatives. However, the densities under such models have no close-form
expression: moments and quantiles are quite hard to compute.

The second category of Geometric Lévy based models are called infinite activity models. In these
models, one need not introduce a diffusion component since the dynamics of jumps is rich enough to
generate nontrivial small time behaviour and it is arguably realistic in describing the price process at
various time scales. Moreover, one can construct this class via Brownian subordination, which yields
additional tractability over the jump-diffusion models. [12; 32]
There are two sub-categories under infinite activity models: infinite activity of finite variation and
infinite activity of infinite variation. Examples of infinite activity of finite variation models are the VG
models. Examples of infinite activity of infinite variation models are NIG models, and stable models.

16Alternative names are Merton jump diffusions or Compound Gauss-Poisson model.
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2.7.6.2 Construction of Geometric Lévy models

There are three approaches to define a parametric Lévy process with infinite jump intensity. The
first approach is to obtain a Lévy process by subordinating a Brownian motion with an independent
increasing Lévy process (we called such a process a subordinator). Here one can immediately obtain
the characteristic function of the resulting process. However an explicit formula for the Lévy measure
in not always obtainable. Hence to account for non-normality of returns, one can write the return
process Lt = Z(T (t)) as a subordinated process, where the subordinator T (t) is an increasing Lévy
process with stationary and independent increments and Z is a Gaussian process with independent
increment. One example of a subordinated Lévy process is a Compound Poisson Process, that is a
random walk time changed by a Poisson process. Hence one can say a subordinated Lévy process is
still a Lévy process. Some Lévy process can be specified through Brownian subordination. This is an
example of a time changed Lévy process. Brownian subordination involves specifying Brownian motion
with drift and time-changing the process by a subordinator. Such subordinators act like “internal
clocks”, as market information arrives at a random time, the Wiener process with constant drift and
volatility is evaluated by a given stochastic process (or time changed by a given stochastic process), if
this stochastic process is infinitely divisible, then by simply time changing a drifted Wiener process,
we obtain a new Lévy process. This feature makes Brownian subordinated models appealing in pricing
derivative securities. An appropriate subordinator is required to specify a Brownian subordinated model
and such subordinator should have the following properties.

• It should be able to give a realistic view of the randomness in information arrival.

• it should be able to control skewness and excess kurtosis of the underlying asset since it has enough
parameters to incorporate these features.

• The expected time of information arrival at a calendar time should be equal to t.

It is worth mentioning that the generalised hyperbolic distribution (GHD) is constructed by subordi-
nating a Brownian motion with a GIG process. Variance Gamma and Normal Inverse Gaussian both
belong to the class of Generalised Hyperbolic Distribution.

The VG process is obtained by time-changing a Brownian motion with a gamma subordinator and
the characteristic exponent of the form:

ψ(u) = − log(1 + u2σ2

2 ν − iuθν)/ν
The Lévy measure of the VG process is given by

ν(dx) = (C1I(x < 0) exp(−C3x) +C2I(x > 0) exp(−C4x))∣x∣−1dx

which we will discuss in detail in the Chapter 4. The NIG process is obtained by subordinating a
Brownian motion with a GIG process and the characteristic exponent is of the form:

1
ν
− 1
ν

√
1 + u2σ2ν − 2iuθν

The second approach is to specify the Lévy measure directly. Some main examples are tempered stable
processes [41], CMGY model [13].

The third approach is to specify the probability density function directly, more precisely, to specify
the density of increments of the process at given time scales ∆, by arbitrarily selecting an infinitely
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divisible distribution. One example is the Generalised hyperbolic processes [23]. In this approach the
increments of the process at the same node can be easily simulated and the distribution parameters can
be estimated in a dataset that is sampled to the same period ∆. However, the law of the increments at
other nodes is hard to find. Also, given the infinitely divisible distribution, one may not be able to tell
whether the corresponding Lévy process has a Gaussian component, finite or infinite jump intensity as
the associated Lévy Khintchine representation is hard to find.
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Chapter 3

VWAP Options

VWAP options were suggested to reduce market manipulation risk, and a typical problem naturally
arises is the pricing of VWAP options. An investor who wish to buy or sell a VWAP contract wants
to have an idea of the fair price. The Market maker for these contract wishes to know how much the
contracts are worth and how to hedge them. This gives rise to the need for derivative products base
on VWAP. These derivative products are often called VWAP options. There are very few published
or working papers available on the pricing of VWAP options. There exist only two papers and one
dissertation which discusses VWAP from an option pricing point of view. The first contribution comes
from Stace [79; 80]. The author approximates the distribution of VWAP to lognormal, the first two
moments of VWAP are found by solving a system of nineteen ODEs, and finally the options are priced
under the classical PDE approach. We briefly sketch what has been done now. First, the pricing PDE
for the VWAP options is derived. Throughout the analysis, stock price is assumed to evolve as a GBM,
volume is a mean reverting diffusion process1, hence the dynamics of the underlying are given by the
following SDE

dS(t) = µS(t)dt + σS(t)dW1(t),
dU(t) = a(U(t))dt + b(U(t))dW2(t)

where a ∶ R ↦ R and b ∶ R ↦ R2 are sufficient regular functions so that the SDE has a unique global
solution. The VWAP is represented as

I(t)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y (t)
Z(t) , if t > 0
S(0), t = 0

where

Y (t) = ∫ t

t0
S(s)U(s)ds and

Z(t) = ∫ t

t0
U(s)ds; ∫ t

t0
U(s)ds ≠ 0

1Two different volume models were attempted, the first model is a Brennan & Schwarz type model of the form dU(t) =
α(Umean−U(t))dt+βU(t)dW2(t); the second model is a CIR model of the form dU(t) = α(Umean−U(t))dt+β

√
U(t)dW2(t)
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Then

dY (t) = S(t)U(t)dt, and
dZ(t) = U(t)dt

Where Y (t) and Z(t) are increasing functions of time when S(t) > 0 and U(t) > 0.
The author starts by postulating that the price of the option could be described by a function of
t, S, U, Y, and Z, denoted as V (t, S, U, Y, Z).

Then apply multidimensional Itô formula, V satisfies

dV = Vtdt + VSdS + VU dU + VY dY + VZdZ + 1
2(σS)2VSSdt + 1

2(b(U))2VUU + ρσS(b(U))VSU dt

= VSdS + VU dU +LV dt

where L = Vt +USVY Y +UVZ + 1
2(σS)2VSS + 1

2(b(U))2VUU + ρσSb(U)VSU .
Meanwhile, a portfolio composed of two options (long position of 1 unit and short position of ∆1

unit) and one stock (long position of 1 unit) is constructed to arrive a PDE that describes the price of
the option, i.e.

Π = V −∆S −∆(1)V (1)

Again, apply Itô formula,

dΠ = dV −∆dS −∆(1)dV (1)
= VSdS + VU dU +LV dt −∆dS −∆(1)(V (1)S dS + V (1)U dU +LV (1))

Assume that VU ≠ 0, V (1)U ≠ 0 and choose ∆ and ∆(1) such that the stochastic term dS and dU vanish,
the change in the portfolio is given by

dΠ = (LV −∆(1)LV (1))dt

Which is a difference of two continuous local martingale and has finite variation. After some steps, the
fundamental PDE he used in describing the price of the VWAP option is arrived as

Vt + 1
2(σS)2VSS + 1

2b2(U)USS + ρσSb(U)VSU

+ rSVS + SUVY +UVZ − rV + (a(U) − b(U)Λ(t, S, U, Y, Z))VU = 0 (3.1)

where Λ(t, S, U, Y, Z) is some arbitrary constant function. Knowing that the Feynman-Kac formula
provides a convenient link between PDE and expectation, the expectation of the price of VWAP is
found. Second, the author derives some analytical formulae for the bounds for the option that are
independent of the volume process. He emphasises these bounds could be viewed as a hedging strategy
that covers all risk, however, the cost is prohibitively big which makes the VWAP unattractive to buy.
Third, Monte Carlo analysis is developed to price and find the Greeks of the VWAP options, several
control variates are found. Fourth, the author postulates that the VWAP moments represent effective
lognormal moment and the price of the option is found by matching the first two moments of the
VWAP to a lognormal distribution. To approximate the expectation and variance of the quotient Y

Z ,
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the following Taylor series expansion is used [57]

E(Y

Z
) ≈ E(Y )

E(Z) −
Cov(Y, Z)
(E(Z))2 +

E(Y )
(E(Z))3 Var(Z) ,

Var(Y

Z
) ≈ (E(Y )

E(Z))
2 ( Var(Y )
(E(Y ))2 +

Var(Z)
(E(Z))2 − 2 Cov(Y, Z)

E(Y )E(Z)) .

The first two moments are found by solving a large (19 equations) system of ODEs. Subsequently, the
lognormal parameters µ̃ and σ̃ are found and the fundamental pricing PDE that describes the price
of VWAP options is solved2. In addition to price vanilla type of VWAP call option, the author also
attempts to price an exotic type of VWAP option: a VWAP digital option. Fifth, a finite difference
method3 is attempted to solve the PDE of the form (3.1) , in particular, explicit (See [84]), Crank-
Nicolson [16], and Alternating Direction Implicit (ADI) scheme [65] are used. Solving by finite difference
is found to be very challenging as there are four state variables4 together with the time variable, and
the boundary condition is quite hard to formulate. As a final step, a series solution to the price of the
VWAP options is developed and the first two term of this solution are explicitly derived, based on the
assumption that stock price follows geometric Brownian motion and the volume is a mean reverting
process. It is found that the first term of the series described by a PDE which is quite similar to the
Asian option PDE. The first term is found to be independent of the volume process. The author has
also shown that the first term of the expansion works quite well when mean reversion is high.

The second approach is due to Novikov et al.(2010) [62], the authors propose to price the VWAP
option by matching moments. However, the problem was solved via a semi-analytical approach. Now
let’s sketch briefly. First, the authors postulate that the VWAP moments represent a particular class of
Lévy process, so-called Generalised Inverse Gaussian (GIG) process. The rationale is that the VWAP
option is very similar to the Asian arithmetic option. There is a vast literature on the pricing of
Asian arithmetic options. In the case of Asian arithmetic options, some authors suggest moment-match
to skewed distribution, i.e. Inverse Gamma (See[51]). A skewed distribution belongs to the class of
infinitely divisible distribution and so induce a Lévy process X = {X(t), t ≥ 0}. Therefore, it is not
unreasonable to postulate the process of VWAP represents an effective GIG process. Another important
observation is that, the expression of VWAP is in term of the following ratio of two integrals,

E
⎛
⎝∫

T
0 StUtdt

∫ T
0 Utdt

⎞
⎠ (3.2)

then taking the expectation, they assume St is assumed to be independent5 to Ut, hence equation (3.2)
becomes

∫ T

0
EStE

⎛
⎝

Ut

∫ T
0 Utdt

⎞
⎠

Knowing the joint Laplace Transform

Φ(z, r, q) = E(exp{−zUt − rUs − qVT })
2See section 6 of [80] or p153 of [79].
3The finite difference method is frequently employed to solve the PDEs which describe the option prices. The method

is well-established, and there is a vast literature about the topic. Some of the excellent references are Morton& Mayer
(2005) [59], Strikwerda (1989) [81], Fletcher (1991) [28] and Mitchell & Griffiths (1980) [53]

4Random variables that depend on the time. The number of state variables determine the number of dimensions in a
PDE.

5As discussed in Chapter 1, the independence between the Brownian motion under the price dynamics and the Brownian
motion under the volume dynamics leads to the independence between St and Ut.
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and assuming the usual technical condition holds ,i.e.

(Ut/VT ) <∞
It follows that

E( Ut

VT
) = −∫ ∞

0

∂

∂z
Φ(z, 0, q)∣

z=0
dq

= ∫ ∞
0

E(Ute
−qVT )dq

E(AT ) = −∫ T

0
E(St)( ∂

∂z
Φ(z, 0, q)∣

z=0
dq)dt

Clearly, to compute the first moment, the idea is to find Φ(z, 0, q). However, to compute the second
moment, Φ(z, r, q)s need to be derived. This is the joint Laplace Transform of Ut, Us and the integral
of Ut. The key is to compute the Laplace Transform of the integral of the squared Ornstein-Uhlenbeck
process, which does not involve solving any ODEs or PDEs, but rather utilising the Girsanov theorem.
Having analytical moments derived, VWAP moments are matched to the GIG distribution; GIG pa-
rameters are found and are used to specify the distribution for the VWAP; Consequently Option prices
are found by integrating the terminal payoff against the state price density.
The structure of this chapter is as follows. First, the VWAP is described in detail. Then the specific
contract priced in this thesis is described. Finally the use of a VWAP option is presented.

3.1 The Volume Weighted Average Price
A plain vanilla Asian option depends on the time weighted (or arithmetic average) stock price. The
weight on the stock price is equally given to days of light trading and days of heavy trading. A VWAP
is quite similar to the arithmetic average price, except it differs on how the average is taken. In practice,
trade count is required to calculate the VWAP, this explains why VWAP is often used for computing
the stock prices for companies that are publicly listed. The VWAP assigns more weight to high trading
periods than thin trading periods. Therefore, one main reason that VWAP is introduced is that it helps
reducing market manipulation risk. As a result, the use of VWAP is more appropriate for underlyings
that are public listed securities. Nevertheless, we give a simple example to see the difference of a volume
weighted average and an arithmetic average.

Example 3.1 (VWAP and Arithmetic Comparison). Suppose a stock trades at $5 today and there
are 10 trades; tomorrow it trades at $50 and there is 1 trade. The volume weighted average price
$5×10+$50×1

10+1 = $9.09, while arithmetic average price is $5+$50
2 = $27.5

Now we define VWAP in both continuous and discrete time. We start with the more practical
discrete case.

Definition 3.1 (Discrete-time VWAP). Let the time interval [t0, t] be discretized into the intervals
t0 = t̂0, t̂1, ..., t̂N = t and the volume weighted average is formed as

A(T ) = N∑
i=1

wiS(ti) N∑
i=1

wi = 1, wi = U(t̂i)
∑N

i=1 U(ti)
where N represents the number of transactions, Si = S(t̂i), Ui = U(t̂i) denote the price and volume
for each i-th transaction, respectively, i = {1, ..., N}, A(t0) = S(t0) and ∑N

i=0 U(t̂i) ≠ 0. Alternatively,
VWAP can be defined in continuous time.
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Definition 3.2 (Continuous-time VWAP). Denote the price of a stock at time t as S(t), and the
number of trades of S(t) per unit time as U(t). Let t0 < t, thus the total value value of admissible
trades during the interval [t0, t] is ∫ t

t0
S(u)U(u)du, and the number of shared traded is ∫ t

t0
U(u)du. The

continuous VWAP over time interval [t0, t] is defined as

A(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫ t

t0
S(u)U(u)du

∫ t
t0

U(u)du
, t0 < t

S(t), t = t0

Assume that ∫ t
t0

U(s)ds ≠ 0.

Remark 3.1. Definition 3.2 is reduced to the definition of an Asian arithmetic option when U(t) is
constant.

It is instructive to visualise how VWAP behaves in practice via the plot of real data. We deliberately
omit here due to the lack of access to real-time database. However, it worth mentioning that Stace
(2006) [79] claims that there is little difference between an arithmetic average price and volume weighted
average price (VWAP). The author starts with a collection of real intra-day data during one month
period for four public-listed stock and constructs running Arithmetic and volume weighted average
price. Then by plotting the two averaging prices against the real-time stock price and it is found the
only difference is that VWAP tends to fluctuate more around the start of the averaging before settling
down. During the observation the author also identifies one situation where the arithmetic average
differs from the volume weighted average quite a lot. This is the situation when a stock price drops
to zero and stays there, or stops trading, in the case of the running arithmetic, the average tends to
decrease for the remaining time when averaging is re-computed. On the other hand, the VWAP tends
to be invariant. Hence it is quite clear that the two different ways of averaging potentially impact on
the derivative payout.

3.2 VWAP Options
This thesis is concerned with the valuation of European call VWAP options. We consider fixed strike
with a payoff at the terminal time of

C(T ) = (A(T ) −K)+ =
⎛⎜⎜⎜⎜⎝

T∫
0

S(t)U(t)dt

T∫
0

U(t)dt

−K

⎞⎟⎟⎟⎟⎠

+

Once the call options contracts are priced, put options contracts can be also price via the use of put-call
parity.

3.3 The use of a VWAP
The volume weighted average price (VWAP) over rolling number of days in the averaging period is used
as a benchmark price by market participants and can be regarded as an estimate for the price that a
passive trader will pay to purchase securities in a market. During the past few years, as institutional
investor try to get a real understanding of the true cost of implementing a managerial or strategy
change, VWAP has been gaining in popularity to measure equity execution. VWAP represents the
average price of a security weighted by trade volume. In other words, It is a simple way to calculate
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the average price of a stock over any given time periods. Nowadays, it is commonly used in brokerage
houses as a quantitative trading tool and also appears in Australian taxation law to specify the price
of share-buybacks6

6In Australian financial market, share-buyback is a common activity among Investment Banks, Insurance companies
and other large scale financial institutions in gaining tax advantage and reducing managerial agency problem.
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Chapter 4

The Variance Gamma process and
model

As discussed previously (2.7.6.1), models with jumps usually fall into two categories: Jump-diffusion
models and infinite activity (intensity) models. In particular, the jump size under the first category can
be chosen either to be Gaussian or non-Gaussian type; Likewise, The infinite activity models can either
be chosen to be of finite variation or infinite variation. A drawback of the jump-diffusion models is the
parameter instability due to the infinite variation property possessed by the Brownian component. In
this regard, Madan and Seneta propose a pure jump model (VG model) in modelling the dynamics of
the stock price. This model is a infinite activity based model with finite variation. The nice properties
of the VG model have led to its recent implementation in the Bloomberg system through the function
SKEW [38]. Now let’s take a closer look at VG.

4.1 The VG process and distribution
The class of Variance Gamma distribution was first introduced by Madan & Seneta (1990) [48] in the
late 1980s. The symmetric case of the VG process was proposed and developed by Madan & Seneta
[48] and Madan & Miline [52] as a model for studying stock returns and option pricing. The original
formulation was further generalised by Madan, Carr and Chang (1998) [47] to a general VG model.
The original symmetric VG process is considered as a special case of the general case with θ = 0. We
always refer to the general case whenever we talk about the VG process in this thesis. The VG process
has become one of the most popular Lévy models among academia and practitioners.

The VG process is a process of independent and stationary increments, that is a Lévy process [31].
A Lévy process can be represented as the sum of three independent components: a deterministic drift, a
continuous Wiener process, and a pure jump process. Brownian motion is a special case where the jump
component is absent. On the other hand, Poisson process is a special case where the Brownian motion
and the deterministic component are absent. VG process is a pure jump process, which is similar to
the Poisson process, and thus it can be expressed in terms of its Lévy density, the simplest version with
no parameters being (See [48])

kV G(x) = 1
∣x∣e−

√
2∣x∣ (4.1)
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For the VG process with the usual (θ,σ,ν) parameterisation, the Lévy density is given by

kV G(x) = 1
ν∣x∣ exp

⎛
⎝
θ

σ2 x − 1
σ

√
2
ν
+ θ2

σ2 ∣x∣⎞⎠
where ν,σ > 0

The Lévy measure has the following form

ν(dx) = (C1I(x < 0) exp(−C3x) +C2I(x > 0) exp(−C4x))∣x∣−1dx

where C1 > 0, C2 > 0, C3 > 0, C4 > 0 are constants. Carr-Geman-Madan-Yor have introduced CGMY
process in [12], which is an extended process of VG process. The Lévy measure of the CGMY process
is

ν(dx) = C(I(x < 0) exp(−Gx) + I(x > 0) exp(−Mx))∣x∣−(1+Y )dx (4.2)

where C > 0, G > 0, M ≥ 0, Y < 2. and Y ≤ 0, then G > 0 and M > 0 are assumed. When Y = 0, we
obtain a VG model as a difference of two independent identically distributed gamma processes.

Where

C = 1/ν > 0

G = 1/⎛⎝
√

θ2ν2

4 + σ2ν

2 − θν2
⎞
⎠

M = 1/⎛⎝
√

θ2ν2

4 + σ2ν

2 + θν2
⎞
⎠

Unlike the Poisson process, the VG process may have infinite number of jumps in any interval, making
it a process of infinite activity. Unlike Brownian motion, the VG process has finite variation, so in some
sense it behaves in a more stable way.

4.1.1 The Construction of a VG process
There are two representations for the VG process, both of which are useful, but in different context. In
the first representation, the VG process is interpreted as a Brownian motion with drift, where time is
changed by a gamma process. Suppose there is a Wiener process with constant drift θ and volatility σ.
If W (t) is the standard Brownian motion, we can write the process B(t; θ,σ) as

B(t; θ,σ) = θt + σW (t) (4.3)

where the time t follows a gamma process τγ(t) ∶= γ(ν)t ∼ Γ( t
ν ,ν), i.e.

fγ(x, t) = x
t
ν −1e−x

ν

ν
t
ν Γ( t

ν
)
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with unit drift µ = 1 (mean rate per unit of time) and variance parameter ν which results in the pure
jump process that has an infinite number of jumps in any interval of time :

X(t; θ,σ,ν) = B(τγ(t), θ,σ)
= θτγ(t) + σWτγ(t) (4.4)

The gamma density has the characteristic function, ϕγ(u, t) = E(exp(iuγ(ν)t )), given by

ϕγ(u, t) = E(exp(iuXγ
t )) = ( 1

1 − iuν
) t

ν

(4.5)

The characteristic function for the VG is obtained quite easily by first conditioning on the gamma
process and then using the gamma characteristic function to get

ϕV G(u, t) = E(exp(iuXγ
t )) = ⎛⎝

1
1 − iuθν + σ2ν

2 u2
⎞
⎠

t
ν = etψ(u) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ln⎛⎝

1
1 − iuθν + u2σ2ν

2
)⎞⎠

t⎫⎪⎪⎪⎬⎪⎪⎪⎭
= (f(u))t

(4.6)
The characteristic function of the form (4.6) is in the class of infinitely divisible distributions, hence
one can deduce the Lévy measure kV G(x) from the logarithm of the characteristic function:

log(ϕV G(u, t)) = t∫ ∞
−∞ (eiux − 1)kV G(x)dx (4.7)

Differentiating equation (4.7) with respect to u on both sides yields a recognisable Fourier transform,
leading to

kV G(x) = c

∣x∣e−A∣x∣+Bx, (4.8)

A = 1
σV G

HIIJ(2
ν
+ θ2

σ2
V G

), (4.9)

B = θ

σ2
V G

, (4.10)

c = 1
ν

(4.11)

where B < A and ∣x∣kV G(x) is a decreasing exponential for positive x and increasing exponential for
negative x. This interesting property of the Lévy measure is a necessary and sufficient condition for
the unit time random variable to be self-decomposable [74]. Let γν be a gamma process with unit drift
and variance ν. One can describe the dynamics of the continuous time gamma process by describing
the simulation of the process. Since the gamma process is an infinitely divisible distribution of i.i.d.
increments over non-overlapping intervals of equal length, the simulation may be described in terms of
the Lévy measure [71].

νγ(dx) = exp (− 1
νx)

νx
dx, for x > 0 and 0 otherwise. (4.12)

Another interesting remark is that, the Lévy measure has an infinite integral, one can see that
the gamma process has an infinite arrival rate of small jumps, as is indicated by the concentration of
the Lévy measure at the origin. The process is of pure jump type and could be approximated as a
compound Poisson process. To simulate the compound Poisson process approximation, we truncate the
Lévy measure near the origin by throwing away small jumps of size below ϵ. Then the area under the
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truncated Lévy measure can be used as the Poisson arrival rate of jumps. The normalised truncated
Lévy measure acts as the conditional density of jump magnitudes, given the arrival of a jump.
The VG process X(t; θ,σ,ν) can now be formally defined in terms of the Brownian motion with drift
B(t; θ,σ) and gamma process with unit mean rate τγ(t) as

X(t; θ,σ,ν) = B(τγ(t), θ,σ) (4.13)

The idea of time change makes economic sense. It is known that the financial market does not evolve
identically every day. More precisely, trade volume is not uniform during the day and trading activities
fluctuate quite a lot form time to time. Intuitively, the original clock could be regarded as the calendar
time and the random clock could be regarded as the “business time”. This business clock could be
tuned faster while trading activity is high during a business day, and vice versa, when there is not
much trading it could be slowed down. Hence, conceptually, the business time can be distinguished
from calendar time and describe the evolution of trading activity. One can view the VG process as a
Brownian motion run under a random gamma clock.

From the Lévy measure, one may infer that the VG process is also the difference of two independent
increasing gamma processes. That is

XV G
t = γ(µ+,ν+)

t − γ(µ−,ν−)
t (4.14)

Where µ± are defined in equation (5.5). Here the two gamma processes are independent (but defined
on a common probability space) with parameters

µ± =
√

θ2ν2

4 + σ2ν

2 ± θν2 (4.15)

ν± = µ2±ν (4.16)

This representation allows us to determine the Lévy measure for Xt,

ν(dx) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

µ+2

ν+ e−µ+
ν+ ∣x∣/∣x∣, if x > 0

µ−2

ν− e−µ−
ν− ∣x∣/∣x∣, if x < 0

(4.17)

The division by the absolute value of the jump size in the VG Lévy measure (4.17) explains why the
VG process has infinite activity, as the VG Lévy measure integrates to infinity. It is also clear that the
process is of finite variation as ∣x∣ is integrable with respect to the VG Lévy density. In term of the
generating triplet (σ,ν, θ), the Lévy measure can be re-written as

νVG(dx) = exp(θx/σ2)
ν∣x∣ exp

⎛⎜⎝−
√

2
ν + θ2

σ2

σ2 ∣x∣⎞⎟⎠dx (4.18)

Now we compare VG process against Brownian motion, recall the definition of a standard Brownian
motion W = {Wt, t ≥ 0}

• The trajectories of W are P-a.s. continuous.

• It starts at zero: W (0) = 0 or P(W (0) = 0) = 1.

• Stationary increment:∀ 0 ≤ s ≤ t, W (t) −W (s) d=W (t + h) −W (s + h).
• Distribution identity (Normal Increment):∀ 0 ≤ s ≤ t, W (t) −W (s) d=W (t − s).
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• Independent increment: ∀ 0 ≤ u ≤ s ≤ t, W (t) −W (s) is independent of {W (u), u ≤ s}
• W (t + h) −W (t) ∼ N(0, h): increments are normally distributed.

In a similar manner, one can define the stochastic process based on the VG distribution. (See
[76] for example). A stochastic process X = X(t), t ≥ 0 is a Variance Gamma process with parameter
C1, C2, C3, C4 if

• The trajectories of X are P-a.s. right continuous with left limits.

• It starts at zero: X(0) = 0 or P(X(0) = 0) = 1.

• Stationary increment:∀ 0 ≤ s ≤ t, X(t) −X(s) d=X(t + h) −X(s + h).
• Distribution identity:∀ 0 ≤ s ≤ t, X(t) −X(s) d=X(t − s).
• Independent increment: ∀ 0 ≤ u ≤ s ≤ t, X(t) −X(s) is independent of {X(u), u ≤ s}
• X(t + h) −X(t) ∼ VG (C1(h), C2(h), C3, C4): increments are VG distributed.1

It turns out that a VG process is a pure jump process. Sample paths have no diffusion component in
contrast with Brownian motion.

4.2 The VG Stock Price Model
The VG model is a reasonably tractable and parsimonious model among all pure jump models. The
Madan et al. [47] paper shows that the VG process is successful in explaining the volatility smile due
to the fact that VG process is a purely discontinuous process. Comparing to the GBM model which
contains two components: deterministic drift and diffusion components, the Geometric Lévy based stock
price model we consider in this thesis contains three components : deterministic component, diffusion
& jump component. By modelling the log-returns of the stock price with a general Lévy process (a
combination of diffusion process and the VG process),

Lt = log(St) − log(St−1) =m + σBM(Wt −Wt−1) + (XV G
t −XV G

t−1 )
and the stock price process can be written as

St = S0eLt

the VG model can capture the well-documented volatility smile/skew observation. Assuming no divi-
dends are paid, a risk-neutral measure is chosen to mean-correct the original. We adopt the difference-
of-gammas representation and define the continuous stock price model as

St = S0eLt , S0 > 0 (4.19)

where Lt =mt + σBM Wt +XV G
t , assuming 0 interest rate.

In this way, the log-returns of stock prices are no longer normally distributed.
Now we recall some basic facts under the classical Black Scholes framework,

1When C1 = C2, we obtain the CGMY process, then X(t + h) −X(t) ∼ (C(h), G, M).
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log St+1 − log St ∼ Gaussian(µBM − σ2
BM

2 ,σ2
BM)

One can move easily from the real world to the risk-neutral world by simply replacing the drift µ

with a constant interest rate r (assume no-dividends).

St = S0 exp((r − σ2
BM

2 )t + σWt) , t ≥ 0

In contrast with the Black Scholes’ setting; in the case of a Geometric Lévy model, we are working
in an incomplete market, meaning that there is no unique transformation. In fact, there are infinite
many E.M.M.. However, knowing market doesn’t have to be complete for the absence of arbitrage to
occur, one particular simple transformation is the mean-correcting measure changes, where the Lévy
process is shifted in such a way as to obtain a martingale.

St = S0eLt = S0emt+σBM Wt+XV G
t

where

m = µ − 1
2σ

2
BM − log( 1

1 − θv − 1
2σ

2
V Gν
)/ν (4.20)

ensures e−rtSt is a martingale.
where the jump Lévy process XVG

t is the difference of 2 independent gamma processes
Xγ(C1; 1/C4), Xγ(C2; 1/C3).That is

XVG
t =Xγ(C1; 1

C4
) −Xγ(C2; 1

C3
) (4.21)

where the constant m is chosen in such a way that the discounted asset price is a martingale; that is,
it must satisfy

E(e−rtSt) = S0

Hence, the drift

m = µ − 1
2σ

2
BM − log( 1

1 − θv − 1
2σ

2
VGν
)/ν

is obtained.

Proof. Using Lévy Khintchine theorem and the basic property of martingales

ESt = S0etψ(1) = S0

$⇒ ESt = S0etψ(1) = S0e

t

⎛⎜⎜⎜⎝
m+σ2

BM
2 +log

⎛
⎝ 1

1−θν+ (σVG)2
2 ν

⎞
⎠/ν

⎞⎟⎟⎟⎠ = S0

iff

m = −1
2σ

2
BM − log

⎛
⎝

1
1 − θν + σ2

VG
2 ν

⎞
⎠/ν assuming no growth in price
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Figure 4.1: Comparison of trajectories

m = µ − 1
2σ

2
BM − log

⎛
⎝

1
1 − θν + σ2

VG
2 ν

⎞
⎠/ν assuming price growths at rate µ

There are two structural properties that make the VG model appealing. The first one is the complete
monotonicity of the jump size intensity, meaning that the large jumps occur less frequently than small
jumps. This is practically sensible as more buy orders are placed, price naturally increases, and as more
sell orders are placed, price naturally decreases. Market participants from both buy and sell sides have
incentives to minimise such impacts. The second structural property is the infinite activity property,
in the sense preserves the sample path property of Brownian motion. It is instructive to visualise the
difference of a geometric Lévy process and a lognormal process (or GBM). See Fig.4.1. The left are ten
trajectories of the well-known Geometric Brownian Motion, while on the right are ten trajectories of
geometric Lévy process with variance gamma jumps. As one may tell that, on the right plot, there are
large number of small jumps. And the magnitude of the jumps progressively concentrates on the origin.
In this sense, the VG model respects the intuition underlying the sample path continuity of Brownian
Motion as a model.
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Chapter 5

Pricing VWAP Options via
moment-matching

The payoff of a VWAP option depends on the following path-dependent random variable

AT = ∫
T

0 StUtdt

∫ T
0 Utdt

In this chapter, we study an approximation method to price the VWAP options. The stock price
is assumed to evolve as a geometric Lévy process and the trade volume follows a squared Ornstein-
Uhlenbeck process. However, due to the complexity of the trade volume process, the moments of
VWAP process are hard to calculate without further approximation. Hence, we approximate via a
technique so-called moment matching, which is a common method used in pricing Asian options. Since
the moments of the lognormal law are well known, the moments of VWAP were initially matched to
the lognormal distribution and the lognormal parameters are subsequently found. Following the idea in
Novikov et al. (2010), we then attempt to match to the Generalise Inverse Gaussian (GIG) distribution,
which is a Lévy process with three parameters. The rationale of our choice of approximating to a GIG
distribution is the following.

First, we recognise that the VWAP options are quite similar to the Asian arithmetic options in the
case when volume U(t) is considered to be constant. It is well-known that the Asian arithmetic options
are quite difficult to price and hedge as they do not possess close-form analytic solutions in the classical
Black Scholes framework. The main reason for this difficulty is that the payoff depends on a finite sum
of correlated lognormal variables, which is not lognormal and a suitable probability distribution cannot
be identified [51]. In the case of VWAP option, this difficulty is compounded by the complexity of the
volume process. This is because the VWAP pricing results strongly depend on volume type and it is
known that the VWAP process cannot be reconstructed from market prices [11]. Currently there is no
consensus in the literature on the process that could describe the dynamics of the volume accurately.
However, with the available techniques on the pricing of Asian options, we may be able to develop an
analogous method to deal with this challenge. The Milevsky and Posner (1998) [51] paper postulates
that the infinite sum of the lognormal random variables tend to be Inverse Gamma distributed1, under
some certain restrictions on the parameters. Based on the postulation this result is used to approximate
the finite sum of the correlated random variables and a closed form expression for the value of the Asian
arithmetic option is found by using the Inverse Gamma density as the state-price density2. The idea

1This means the reciprocal of the random variable is gamma distributed.
2A state price is price of an Arrow Debreu Security, it is the value today of 1 dollar paid in one state of the world
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from the Milevsky and Posner (1998) paper is explored and applied to the pricing of VWAP option in
Novikov et al. (2010). The authors postulate that the terminal VWAP price could approximate to a
GIG distribution, the GIG distribution is infinitely divisible and so it is a Lévy process. As mentioned
previously, there is a vast literature on the pricing of options under Lévy processes, a popular class of
Lévy process that is often used in exotic option pricing is the Normal Inverse Gaussian (NIG) process
[2]. As we have seen in chapter 2, the NIG process is a special case of the GIG when the index of the
Bessel function is taken as −1

2 . In addition, the extra parameter of the GIG distribution might make it
a more flexible distribution to model stock prices. Furthermore, The relationship between the quantity
similar to VWAP and some skewed distribution (gamma, NIG, GIG) has been extensively studied in
the actuarial literature (Dufresne, Gerber and Shiu (1991) [22] and Chaubey, Garrido and Trudeau
(1998) [14]). Hence instead of matching the well known lognormal, we have chosen to approximate the
distribution of the VWAP by a GIG process.

5.1 The Model
First, St, Ut processes are defined. Let Wt = (Ŵt, W̃t), 0 ≤ T be two dimensional Brownian Motion on a
filtered probability space (Ω,F ,F,P). Assume

St = S0ert+mt+XV G
t +σBM (ρ,

√
1−ρ2)⋅Wt

where σBM ∈ R+. The dynamics of the Ornstein-Uhlenbeck process are described as

dXt = λ(a −Xt)dt + (σOU , 0) ⋅ dWt

for some real σOU . Let introduce the real-valued stochastic processes W̄ (1) and W̄ (2) by setting

W̄ (1) = Ŵt, W̄ (2)
t = ρŴt +√1 − ρ2W̃t

where ρ ∈ [−1, 1], W̄ (1)
t and W̄ (2)

t are standard one-dimensional Brownian motion defined on some
filtered probability space (Ω,F ,F,P), with quadratic variation satisfying [W̄ (1), W̄ (2)]t = ρt. It is
evident that

St = S0ert+mt+XV G
t +σBM W̄ (2)

t (5.1)

and
dXt = λ(a −Xt)dt + σOU dW̄ (1)

t (5.2)

where W̄ (2)
t is a Brownian motion correlated with the Brownian motion W̄ (1)

t for the volume process
Ut, XV G

t is a variance gamma process independent of W̄ (2)
t , and m = µ− 1

2σ
2
BM − log(1− θν − 1

2σ
2
V Gν)/ν

is a drift to ensure e−rtSt is a martingale.
Stace in his paper [80] used mean-reverting processes (CIR and Brennan-Schwartz processes) for mod-
elling trade volume. Here we adopt the following mean-reverting process (shifted squared Ornstein-
Uhlenbeck process) to model the trade volume in accordance to Novikov et al. (2010),

Ut =X2
t + δ, dXt = λ(a −Xt)dt + σOU dW̄ (1)

t , X0 = a

where m,λ,σBM, a, δ are assumed to be bounded constants, δ ≥ 0,λ > 0. In particular, λ being the speed
of mean reversion, a can be thought of as the long term average of the volume process. Intuitively,
(only) tomorrow.
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when Xt rises, the drift < 0, then Xt tends to drop ; when Xt drops, the drift > 0, then Xt tends to rise
back again. The Ornstein-Uhblenbeck process Xt is represented as

Xt = a + σOUξt (5.3)

where ξt is a standard Ornstein-Uhblenbeck process satisfying the SDE

dξt = −λξtdt + dW̄ (1)
t , ξ0 = 0 (5.4)

In the symmetric case, when δ = 0 and a = 0, the process U(t) is a particular case of the Cox-Ingersoll-
Ross(CIR) process, [60].
St is assumed to depends on Ut for any t ≥ 0.
The continuous time analog of the VWAP is given by

AT = ∫
T

0 StUtdt

∫ T
0 Utdt

The approximation of E(AT ) and E(A2
T ) are required, which we will discuss shortly.

5.2 The Approximation
A common approximation to the Asian arithmetic average option is to approximate the distribution
of the underlying asset by a lognormal process. The Turnbull & Wakeman (1991) paper matches the
first two moments of the arithmetic average asset price to a lognormal distribution and an approximate
Asian option price is obtained. The Brigo, Mercurio, Rapisarda & Scotti (2004) paper [10] uses a
moment-matching approach to price basket-options. Stace (2007) [80] matches the first two moments of
the VWAP to a lognormal distribution. Novikov et al. (2010) [62] matches the first two moments of the
VWAP to a Generalised Inverse Gaussian distribution (GIG). In this thesis, we studied the methods
in the last two papers. First, we approximate the distribution to the VWAP by a lognormal process
S̃LN(t). Approximating to this distribution has the advantage of leading to an analytically tractable
problem. Under the objective measure, the dynamics of the process S̃LN(t) is given by

dS̃(t) = µ̃S̃LN(t)dt + σ̃S̃LN(t)dW (t)
with S̃LN(0) = S(0), µ̃ the drift coefficient, σ̃ is the diffusion coefficient, and W (t), 0 ≤ t ≤ T , a Brownian
motion on a filtered probability space (Ω̃, F̃ , F̃, P̃), and F̃(t), 0 ≤ t ≤ T , a filtration for W (t) where T > 0.
The parameters µ̃ and σ̃ need to be found. The VWAP call option is a function of t and S̃LN(t), i.e.
C(t, S̃LN(t)). With taking the lognormal density as the state-price density function, we can obtain a
closed-form analytic expression for the value of a VWAP option.

Second, we approximate the distribution to the VWAP by a GIG process S̃GIG(t). The GIG density
is given by

p(x; a, b, p) = (a/b)p/2
2Kp(√ab)xp−1 exp{−(ax + b/x)

2 } , x > 0

where a > 0, b > 0, p is a real number and Kp is a modified Bessel function of the second kind. The
parameters a, b, p need to be found. Then similar to matching lognormal, we assume VWAP call option
is a function of t and S̃GIG(t), i.e. C(t, S̃GIG(t)). Then by using the GIG distribution as the state-price
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density function, we can obtain a closed-form analytic expression for the value of a VWAP option.

5.3 The moment-matching technique
The moment matching approach is a method whereby a number of moments of the process At at the
time T are set equal to the corresponding moments of a candidate approximating process. The resulting
set of equations then allows us to derive the parameters of the approximating process.
To approximate a non Gaussian distribution by a lognormal, we choose parameters µ̃, σ̃ of the lognormal
such that the lognormal moments match our VWAP moments. In other words, to match At to a
lognormal process S̃t with drift µ̃ and volatility σ̃ we require only the first two moments of AT . We
recall that the mean and the variance of S̃t are given by

E (S̃t) = S̃0eµ̃t, Var (S̃t) = S̃0
2
e2µ̃t (eσ̃2t − 1) .

Making the substitutions E (S̃T ) = E (AT ) and E(S̃T
2) = E (A2

T ) allows us to obtain the parameter
values µ̃ and σ̃ since

µ̃(t) = 1
t

log E(S̃t)
S(0) (5.5)

σ̃(t) =
HIIJ1

t
log

Var (S̃t) +E(S̃t)2
E(S̃t) (5.6)

Now for any given time T one can find µ̃ and σ̃ which matches the final distribution of the VWAP
to a lognormal distribution, these are given by µ̃(T ) and σ̃(T ). This implies that we now have the
parameters µ̃(t) and σ̃(t) for the process S̃t at all times. Nevertheless, the approach in obtaining
the VWAP moments will be described in the next section. Another candidate distribution could be
the Generalised Inverse Gaussian distribution (GIG). The choice of approximating with the GIG is
motivated by past research on the pricing of Asian options [17; 51]. It is known in the Mathematical
Finance literature that the flexible semi-heavy tailed distribution is a natural choice for approximating
Asian options on stocks with large volatilities.

The GIG distribution has the density function as in (2.5.4) Its ith moment is given by

mi = ( b

a
)i/2 Kp+i (√ab)

Kp(√ab) . (5.7)

To match At to a GIG process with three unknown parameters a, b and p. We require the first
three VWAP moments E (AT ), E (A2

T ) and E (A3
T ), the matching of moments gives a system of three

nonlinear equations
mi = E (Ai

T ) , i = 1, 2, 3

with three unknowns parameters a, b and p to be found.

5.4 Deriving Analytical Moments
In this section, analytical formulae for the first and second moments of the VWAP are derived via the
calculation of the Laplace transform of the integral of the squared Ornstein-Uhblenbeck process. This
methodology is chosen based on its convenience and simplicity. Calculations of this type (which are
based only on using the Girsanov transformation and do not involve solving any PDEs and ODEs) have
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been done in the context of the calibration of an Ornstein-Uhlenbeck process [61].

5.4.1 First moment
The first moments is given by the following

Proposition 5.1.

E(AT ) = −S0eµt ∫ T

0
(∫ ∞

0

∂

∂z
∣
z=0
φ(z, 0, q)dq)dt (5.8)

The mean of the VWAP process is computed in the following manner

E (AT ) = E⎛⎝∫
T

0 StUtdt

∫ T
0 Utdt

⎞
⎠

= ∫ T

0
E(StUt

VT
)dt

= ∫ T

0
E
⎛
⎝

S0emt+σBM (ρŴt+√1−ρ2W̃t)+XtUt

∫ T
0 Utdt

⎞
⎠dt

= S0 ∫ T

0
EeXt+mt+σBM

√
1−ρ2W̃tE

⎛
⎝

eσBMρŴtUt

VT

⎞
⎠dt

The next step consists of elimination of the term eσBMρŴt using the change of measure. For convenience
we define

ηt = dQ
dP
∣
Ft

= Et (∫ ⋅
0
λdWs) , P − a.s.

= exp{∫ t

0
λdWs − 1

2 ∫
t

0
∣λ∣2ds}

where Wt is a P Brownian Motion and λ is constant satisfying

E(exp(1
2 ∫

T

0
∣λ∣2dt)) <∞.

Hence, we define the Radon Nikodym derivative as

dQ
dP
∣
FT

= eρσBM ŴT− ρ2
2 σ

2
BM T

is an exponential martingale and therefore by Girsanov theorem,

dWQ
t = dWt + ρσBMdt
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E
⎛
⎝

eσBMρŴtUt

VT

⎞
⎠ = EQ ⎛⎝

eσBMρŴtUt

VT

dP
dQ
∣Ft
⎞
⎠

= EQ ⎛⎝
eσBMρŴtUt

VT
e−ρσBM Ŵt+ ρ2

2 σ
2
BM t⎞⎠

= e
1
2ρ

2σ2
BM tEQ ( Ut

VT
) (5.9)

Hence we have,

E (AT ) = S0 ∫ T

0
EeXt+mt+σBM

√
1−ρ2W̃te

1
2ρ

2σ2
BM tEQ ( Ut

VT
)dt

= S0e
log( 1

1−θν+σ2
2 ν
)

t
ν

e
1
2σ

2
BM (1−ρ2)teµte− 1

2σ
2
BM te

− log( 1
1−θν+σ2

2 ν
)

t
ν

e
1
2ρ

2σ2
BM t ∫ T

0
EQ ( Ut

VT
)dt

= S0et(µ+ 1
2σ

2
BM (1−ρ2−1))e 1

2ρ
2σ2

BM ∫ T

0
EQ ( Ut

VT
)dt

= S0eµt ∫ T

0
EQ ( Ut

VT
)dt (5.10)

where EQ is the expectation with respect to measure Q. For convenience, write

VT = ∫ T

0
Utdt

We need to find EQ ( Ut

VT
). In refer to paper [62], this expectation can be found by computing the Laplace

transform of the integral of the squared Ornstein-Uhblenbeck process.
Defined the joint Laplace transform as

φ(z, r, q) = EQ(exp{−zUt − rUs − qVT }) (5.11)

and assuming that
EQ(Ut/VT ) <∞

we can compute E(AT ) as follows. First we note that

∂

∂z
Φ(z, 0, q)∣

z=0
= EQ ( ∂

∂z
e−zUt−qVT ) ∣

z=0
= −EQ (Ute

−qVT ) . (5.12)

Integrating both sides of equation (5.12) we have

−∫ ∞
0

∂

∂z
∣
z=0
φ(z, 0, q)dq = − ∂

∂z
∣
z=0
∫ ∞

0
φ(z, 0, q)dq = − ∂

∂z
∣
z=0
∫ ∞

0
EQ(e−zUt−q ∫ T

0 Utdt)dq

= ∫ ∞
0

EQ (Ute
−qVT )dq = EQ ( Ut

VT
) (5.13)

Hence the first moment can be represented now as the following

E(AT ) = −S0eµt ∫ T

0
(∫ ∞

0

∂

∂z
∣
z=0
φ(z, 0, q)dq)dt
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Next we find φ(z, 0, q)
φ(z, 0, q) = EQ(exp(−zUt − q∫ T

0
Utdt))

= exp{−zδ − qδT}Ψ(z, q)
where

Ψ(z, q) = EQ(exp{−zX2
t − q∫ T

0
X2

t dt}).
The next step consists of elimination of the term ∫ T

0 X2
t dt using a change of measure. For convenience

we define the stochastic exponential

ηT (λ) = exp{−λ∫ T

0
WtdWt − λ2/2∫ T

0
W 2

t dt}
where Wt is a standard Brownian motion. Using the Girsanov theorem (see details in [44]), we obtain

Ψ(z, q) = EQ(ηT (λ) exp{−z(a + vWt)2 − q∫ T

0
(a + vWt)2dt})

= EQ(exp{−z(a + vWt)2 − q∫ T

0
(a2 + 2vaWt)dt − λ∫ T

0
WtdWt − (λ2/2 + qv2)∫ T

0
W 2

t dt}).
Set

κ =√λ2 + 2qv2.

Since ∫ T
0 WtdWt = (W 2

T − T )/2 we have

Ψ(z, q) = EQ(ηT (κ) exp{−z(a + vWt)2 − q∫ T

0
(a2 + 2vaWt)dt − (λ − κ)(W 2

T − T )
2 })

and using the Girsanov theorem again,

= EQ(exp{−z(a + vYt)2 − q∫ T

0
(a2 + 2vaYt)dt − (λ − κ)(Y 2

T − T )
2 })

where Yt is a standard Ornstein-Uhlenbeck process with parameter κ i.e. Yt = e−κt ∫ t
0 eκsdWs. After

some simplifications we obtain

Ψ(z, q) = exp{−za2 − qa2T + (λ − κ)T2 }γ (z, q) (5.14)

where
γ(z, q) = EQ(exp{−2zvaYt − 2qva∫ T

0
Ysds − zv2Y 2

t + (κ − λ)Y 2
T

2 }).
To compute γ(z, q), we condition over the filtration Ft,

γ(z, q) = EQ [EQ (exp{−2zvaYt − 2qva∫ T

0
Ysds − zv2Y 2

t + (κ − λ)Y 2
T

2 } ∣ Ft)]
= EQ [eξEQ (exp{−2qva∫ T

t
Ysds + (κ − λ)Y 2

T

2 } ∣ Ft)] (5.15)
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where ξ = −2zvaYt − 2qva ∫ t
0 Ysds − zv2Y 2

t and is Ft-measurable. Using the fact that Yt is a Markov
process, the inner expectation of equation (5.15) can be expressed as

EQ (exp{−2qva∫ T

t
Ysds + (κ − λ)Y 2

T

2 } ∣ Yt) . (5.16)

Set X1 = a ∫ T
t Ysds, X2 = YT , X3 = Yt and σij = Cov(Xi, Xj) for i, j ∈ {1, 2, 3} (see the appendix A.2

for the calculation of the covariances). Because Yt is an Ornstein-Uhlenbeck process, X1, X2 and X3

are Gaussian random variables and so together they form a multivariate normal distribution. Then

the distribution of
⎡⎢⎢⎢⎢⎣
X1

X2

⎤⎥⎥⎥⎥⎦ given X3 = z is a multivariate normal distribution with the mean vector and

covariance matrix given by

µ =
⎡⎢⎢⎢⎢⎢⎣
µ1 + σ13

σ33
(z − µ3)

µ2 + σ23
σ33
(z − µ3)

⎤⎥⎥⎥⎥⎥⎦
, Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
σ11 − σ2

13
σ33

σ12 − σ13σ23
σ33

σ12 − σ13σ23
σ33

σ22 − σ2
23
σ33

⎤⎥⎥⎥⎥⎥⎥⎥⎦
respectively. So to compute the conditional expectation of equation (5.16), we can find

EQ (exp{−2qvX1 + (κ − λ)X2
2

2 } ∣X3 = z)
= ∫ ∞

−∞ ∫
∞
−∞ exp{−2qvx + (κ − λ)y2

2 }fX1,X2∣X3 (x, y ∣ z)dxdy (5.17)

where fX1,X2∣X3 (x, y ∣ z) is the density function of
⎡⎢⎢⎢⎢⎣
X1

X2

⎤⎥⎥⎥⎥⎦ given X3 = z.

Computation of the double integral of equation (5.17) essentially requires us to solve

∫ ∞
−∞ ∫

∞
−∞ exp{−Ax2 −By2 +Cx +Dy + Fxy +G}dxdy (5.18)

where A, B, C, D, F and G are constants. Under the condition F 2 < 4AB the solution to equation (5.18)
is

2π exp{BC2 +D(AD +CF )
4AB − F 2 +G} (4AB − F 2)−1/2.

Using this result, in addition to performing a number of symbol manipulations in Mathematica, we can
rewrite equation (5.1) as

EQ (exp{−2qva∫ T

t
Ysds + (κ − λ)Y 2

T

2 } ∣ Ft) = exp{HY 2
t + JYt +L}

where the constants H, J and L are known. Mathematica expressions for these constants are too long
to reproduce here; See Appendix for Mathematica codes. This in turn allows us to express γ(z, q) of
equation (5.15) as another double integral of the same form as equation (5.18). This leads to a closed-
form expression for the joint Laplace transform Φ(z, 0, q) where its partial derivative with respect to z

may be computed analytically.
Remark. The Laplace transform of VT given by Φ(0, 0, q) was originally derived in [61]. In

particular, the following expression was obtained in [61] (see also Section 17.3 in [61]) for the case a = 0
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and q ≥ 0:

g(q) = EQ exp(−qv2 ∫ T

0
ξ2

sds) = [ 2κeλT

(κ − λ)e−κT + (κ + λ)eκT
]1/2,

where the process ξs is defined in equation (5.1) and κ = √λ2 + 2qv2. In view of Andersen’s Lemma
([44], see also Section 2.10 in [36]) and taking into account equation (5.1) we have for any X0 = a and
x > 0

P{∫ T

0
X2

s ds < x} ≤ P{v2 ∫ T

0
ξ2

sds < x}.
This implies the following estimate for any p > 0

EQ(V −p
T ) = 1

Γ(p) ∫
∞

0
qp−1Φ(0, 0, q)dq ≤ 1

Γ(p) ∫
∞

0
qp−1g(q)dq.

Since g(q) = O(e−κT ) as q →∞ this estimate implies

EQ(V −p
T ) <∞.

When δ > 0 this result is, of course, trivial. Since Ut is a shifted squared Gaussian process we have also
EQ(Up

t ) <∞ for any p > 0. Using the Hölder inequality we obtain that for any p > 0

EQ(Up
t /V p

T ) <∞
and so condition EQ(Ut/VT ) <∞ holds.

Since σBM does not enter into the computation of E(AT ), we have the following remark.

Remark 5.1.
E(AVG

T ) = E(AVG
T ) = S0eµt

5.4.2 Second moment
Using the same technique as the derivation of the first VWAP moment, the VWAP second moments is
given by

Proposition 5.2.

E (A2
T ) = ∫ T

0 ∫ T

0 ∫ ∞
0

qS2
0e(t∧s)ψ̃(2)e∣t−s∣ψ̃(1)e 1

2σ
2
BM (s+t) ( ∂

∂z

∂

∂r
Φ(z, r, q)∣

z=r=0
)dqdtds.

(5.19)

Given the Laplace Transform φ(z, r, q) in equation (5.11) where

EQ (UtUs

V 2
T

) = ∫ ∞
0

q
∂

∂z

∂

∂r
Φ(z, r, q)∣

z=r=0
dq (5.20)

ψ̃(n) = nm + 1
2n2σ̃2

BM + log
⎛
⎝

1
1 − nθν + (nσV G)2

2 ν

⎞
⎠/ν

σ̃BM = σBM(1 − ρ2)
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To prove this result. First we need the following lemma 5.3 and proposition 5.4.

Lemma 5.3.

E(Sn
t ) = Sn

0 etψ(n) (5.21)

where

ψ(n) = nm + 1
2n2σ2

BM + log
⎛
⎝

1
1 − nθν + (nσV G)2

2 ν

⎞
⎠/ν

Proof. For any n > 0,

E(Sn
t ) = E((S0eLt)n) = Sn

0 EenL(t) = Sn
0 etψ(n)

Now Lt =mt + σBM W̄ (2)
t +XV G

t

E(Sn
t ) = E((S0emt+σBM Wt+Xt)n)
= Sn

0 enmte
1
2 n2σ2

BM tEenXt

= Sn
0 enmte

1
2 n2σ2

BM t ⎛⎝
1

1 − nθν + (nσV G)2
2 ν

⎞
⎠

t
ν

= Sn
0 e

nmt+ 1
2 n2σ2

BM t+log
⎛⎜⎝
⎛
⎝ 1

1−nθν+ (nσV G)2
2 ν

⎞
⎠

t
ν ⎞⎟⎠

= Sn
0 e

t

⎛⎜⎜⎜⎝
nm+ 1

2 n2σ2
BM+log

⎛
⎝ 1

1−nθν+ (nσV G)2
2 ν

⎞
⎠/ν

⎞⎟⎟⎟⎠
= Sn

0 etψ(n)

where

ψ(n) = nm + 1
2n2σ2

BM + log
⎛
⎝

1
1 − nθν + (nσV G)2

2 ν

⎞
⎠/ν (5.22)

Set n = 1 in equation (5.22)

$⇒ ESt = S0etψ(1) = S0e

t

⎛⎜⎜⎜⎝
m+σ2

BM
2 +log

⎛
⎝ 1

1−θν+ (σV G)2
2 ν

⎞
⎠/ν

⎞⎟⎟⎟⎠ = S0

iff

m = −1
2σ

2
BM − log

⎛
⎝

1
1 − θν + (σV G)2

2 ν

⎞
⎠/ν Assume no growth in stock price

In general, we add the expected return µ of St to m, hence

m = µ − 1
2σ

2
BM − log

⎛
⎝

1
1 − θν + (σV G)2

2 ν

⎞
⎠/ν

Proposition 5.4. Let St and Ss be any two Geometric Lévy process of the form St = S0eLt , where
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Lt =mt + σBM Wt +Xt then

E(StSs) = S2
0Ee2LsEeLt−Ls = S2

0e(t∧s)ψ(2)e∣t−s∣ψ(1) (5.23)

Now we are in a position to prove proposition 5.2, the idea is the following.

Proof. Recall in the model setup, W̃t ⊥ Ŵt, The VWAP second moment is given by

E (A2
T ) = E(∫

T
0 StUtdt)2
(∫ T

0 Utdt)2
= ∫ T

0 ∫ T

0
E
⎛
⎝

S0emt+σBM (ρŴt+√1−ρ2W̃t)+XtUtS0ems+σBM (ρŴs+√1−ρ2W̃s)+XsUs

V 2
T

⎞
⎠dtds

= ∫ T

0 ∫ T

0
ES2

0emt+Xt+σBM

√
1−ρ2W̃t+ms+Xs+σBM

√
1−ρ2W̃sE

⎛
⎝

eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

⎞
⎠dtds

= ∫ T

0 ∫ T

0
ES2

0eL̃t+L̃sE
⎛
⎝

eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

⎞
⎠dtds

= ∫ T

0 ∫ T

0
S(0)Ee2L̃sEeL̃t−L̃sE

⎛
⎝

eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

⎞
⎠dtds

= ∫ T

0 ∫ T

0
S(0)Ee2L̃sEeL̃t−L̃sE

⎛
⎝

eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

⎞
⎠dtds

where L̃t = mt + σ̃BM W̃t +XV G
t , σ̃BM = σBM

√
1 − ρ2. Now apply lemma 5.3 and proposition 5.4 with

taking σ̃2 = σ2
BM(1 − ρ2)

E (A2
T ) = ∫ T

0 ∫ T

0
S2

0e(t∧s)ψ̃(2)e∣t−s∣ψ̃(1)E⎛⎝
eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

⎞
⎠dtds (5.24)

where ψ̃(n) = nm + 1
2 n2σ̃2

BM + ln( 1
1−nθν+n2σ2

V G
2

)/ν The next step consists of eliminating of the term

eσBMρ(Ŵt+Ŵs) using the change of measure. Define the Radon Nikodym derivative as

dQ
dP
∣
FT

= eρσBM (ŴT+ŴS)− ρ2
2 σ

2
BM (S+T ), P − a.s.

E
⎛
⎝

eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

⎞
⎠ = EQ ⎛⎝

eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

dP
dQ
∣
F(t)
⎞
⎠

= EQ ⎛⎝
eσBMρ(Ŵt+Ŵs)UtUs

V 2
T

e−ρσBM (Ŵt+Ŵs)+ ρ2
2 σ

2
BM (s+t)⎞⎠

= e
1
2ρ

2σ2
BM (s+t)EQ (UtUs

V 2
T

) (5.25)
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Given the Laplace transform Φ(z, r, q) in equation (5.11) we can compute E (A2
T ) as follows:

∂

∂z
Φ(z, r, q)∣

z=0
= −EQ (Ute

−zUt−rUs−qVT ) ∣
z=0

$⇒ ∂

∂z

∂

∂r
Φ(z, r, q)∣

z=r=0
= EQ (UtUse−zUt−rUs−qVT ) ∣

z=r=0
. (5.26)

Now multiply both sides of equation (5.26) by q and integrating with respect to q over [0,∞):
q∫ ∞

0
( ∂
∂z

∂

∂r
Φ(z, r, q)∣

z=r=0
)dq = q∫ ∞

0
EQ (UtUse−qVT )dq

= EQ (UtUs ∫ ∞
0

qe−VT qdq)
= EQ (UtUs

V 2
T

) .

So we have
EQ (UtUs

V 2
T

) = ∫ ∞
0

q
∂

∂z

∂

∂r
Φ(z, r, q)∣

z=r=0
dq (5.27)

and so the second moment is given by

E (A2
T ) = ∫ T

0 ∫ T

0 ∫ ∞
0

qS2
0e(t∧s)ψ̃(2)e∣t−s∣ψ̃(1)e 1

2 (ρσBM )2(s+t) ( ∂
∂z

∂

∂r
Φ(z, r, q)∣

z=r=0
)dqdtds. (5.28)

Further calculations of Φ(z, r, q) are similar to the case Φ(z, 0, q) and thus are omitted here. We must
note that all our analytical results have been implemented in the Mathematica software package and
fully verified using Monte Carlo simulations (see Chapter 7).

5.4.3 Pricing
To find the price for the VWAP call option call option maturing at T , with strike at K, with the
terminal payoff function

CT = (AT −K)+
using the moment matching technique, we need only the values of lognormal parameters µ̃ and σ̃ at the
terminal time, i.e. µ̃(T ) and σ̃(T ). To obtain these two parameters, first, the analytical moments of
VWAP derived in (5.4.2) and (5.4.1) are solved for each time over the interval [0, 1]. Then based on the
postulation that the moments of VWAP represent moments of the matching distribution (lognormal in
this case), µ̃ and σ̃ are inverted from the analytical moments.

Fig.5.1 illustrates how µ̃(t) and σ̃(t) evolve over time (See Appendix B for Mathematica codes).

(a) Solving µ̃(t) (b) Solving σ̃(t)
Figure 5.1: Solving µ̃(t) and σ̃(t) by computing VWAP moments.
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We integrate against the state price density to obtain the option price. We consider two different
processes to match. The first process is the well known lognormal process with two parameters, i.e.

ÃT ∼ lognormal(µ̃ − 1
2 σ̃

2, σ̃2)⇐⇒ Ã1 = eσ̃W1+µ̃− 1
2 σ̃

2
, W1 ∼ N(0, 1).

Following papers [79; 80; 62], we start by postulating that the process of VWAP represents an effective
lognormal process and then match the first two moments:

EAT = E(ÃT ) = e
1
2 σ̃

2T+(µ̃− 1
2 σ̃

2)T = eµ̃T

EA2
T = E(Ã2

T ) = e2σ̃2+2(µ̃− 1
2 σ̃

2) = e2µ̃T+σ̃2T

In the absence of arbitrage, the risk-neutral price of a VWAP call option is the expected discounted
payoff, which is simply a regular Riemann integral, i.e.

ln Ã(T ) ∼ N(ln Ã(0) + (µ̃ − 1
2 σ̃

2)T, σ̃2T )

C0 = E(e−rT (ÃT −K)+) = ∫ ∞
ln K

e−rT (ez −K)I{ez>K} 1√
2πσ2T

e− (z−ln S(0)−(r− 1
2 σ2)T )2

2σ2T dz

The second process we consider is the so-called generalised inverse gaussian (GIG) process (which is a
popular model in modern actuarial risk theory, see [58]). In this case we first postulate that the process
of VWAP represents an GIG process,

ÃT ∼ GIG
⎛
⎝
√

aKp+1(√ab)√
aKp(√ab) , ( b

a
)⎛⎝

Kp+2(√ab)
Kp(√ab) − (

Kp+1(√ab)
Kp(√ab) )

2⎞
⎠
⎞
⎠

Since the GIG process is characterized by three parameters, we match the first three moments, i.e.

EAT = E(ÃT ) =m(GIG)
1

EA2
T = E(Ã2

T ) =m(GIG)
2

EA3
T = E(Ã3

T ) =m(GIG)
3

where m(GIG)
i are as in equation (5.7). Then similarly, the VWAP option price is obtained by computing

the following regular Riemann integral (which is the discounted expected payoff), i.e.

C0 = E(e−rT (ÃT −K)+) = ∫ ∞
ln K

e−rT (AT −K)I{AT >K} (a/b)p/22Kp(√ab)xp−1e−(ax+b/x)/2dx

For illustration purposes, we consider the following parameter values for both lognormal and GIG
approximations:

r = 0, S0 = 110, K = 100, r = 0, T = 1, ρ = 0

µ = 0.1, σBM = 0.1, θ = 0.14, ν = 0.1 σV G = 0.1,

m = µ − 1
2σ

2
BM − log

⎛
⎝

1
1 − θν + (σV G)2

2 ν

⎞
⎠/ν

∆γ− ∼ Γ(∆t
1
ν

,

√
θ2ν2

4 + σ2
VGν

2 − θν2 )
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∆γ+ ∼ Γ(∆t
1
ν

,

√
θ2ν2

4 + σ2
VGν

2 + θν2 )
and our parameters choice yields results as shown in Table 5.1

Table 5.1: Numerical values of call price and Monte Carlo simulation of call price for varying stock
price volatility value σBM .

σBM Monte Carlo lognormal
approxima-
tion

GIG approx-
imation

0.1 15.89 15.68 15.83
0.2 16.64 16.11 16.59
0.3 18.07 17.61 18.00
0.4 19.89 19.61 19.79
0.5 21.92 21.82 21.76

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Figure 5.2: Call option prices for K = 100 and different stock price volatility σ.
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Chapter 6

Monte Carlo Simulation

This chapter develops Monte Carlo methods to price the VWAP options. Methods developed in previous
chapters are benchmarked and compared to the results of this chapter. The simulations are carried out
in MATLAB, which provides us a rich set of tools for carrying out this task.
In this chapter, we first review some basic mathematics facts in regard to MC and gain a theoretical
understanding of the method. Formulation of the problem and the discretization methods used to
simulate underlying processes of interest follow. Then, the VWAP options are priced and results can
be found in table 5.1 in the last chapter.

Monte Carlo (MC) is a simulation method. It was initially applied to option pricing by Boyle in 1977.
Nowadays, it has been more and more widely applied to price options with complicated structures. MC
has been widely used in financial engineering when an analytic solution for one problem is not available.
Its applications range from pricing, hedging, risk management, etc. Compared with other methodologies
in option pricing, Monte Carlo simulation is straight forward and easy to implement. Though Monte
Carlo simulation is often considered as the last resort1 in pricing derivatives, for derivatives with very
complicated payoff structures, it is often the only feasible approach for pricing purpose.

6.1 The Mathematics behind MC
Suppose we want to estimate some J , and we have

J = E(g(X)) (6.1)

where g(X) is an arbitrary function such that E(∣g(X)∣) < ∞, then we could generate n independent
random variate X1, X2, ..., Xn such that all Xi have the same distribution as X then, according to the
Weak Law of Large Number (WLLN) The estimator of J is given by

Jn = 1
n

n∑
i=1

g(Xi)
In particular, if X has the pdf q(x1, ..., xm) then

J = ∫ ∞
−∞ ...∫ ∞

−∞ g(x1, ..., xm)q(x1, ..., xm)dx1...dxm

and so we have an algorithm for approximating multidimensional integrals.
1When no close-form solution is available.
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Since E(∣g(X)∣) < ∞, by the Kolmogorov’s Strong Law of Large Numbers, a stronger form of
convergence holds:

Jn ∶= 1
n

n∑
i=1

g(Xi) a.s.→
n→∞ Eg(X)

i.e. Jn
a.s.→

n→∞ J

To estimate accuracy of the approximation, we assume

V ar(g(X)) ∶= σ2(g) <∞
and note

V ar(Jn) = V ar(g(X))
n

= σ2(g)
n

Since the Monte Carlo simulation is never exact, and one always has to take the standard error into
account. It can be expressed as

s(X) =
HIIJ 1

n

n∑
i=1
(g(Xi) − Jn)2 or s(X) =

√∑n
i=1 g(Xi)2

n
− (Jn)2

And applying CLT we have the convergence (Jn − J)√n
d→ N(0,σ2(g)). In particular, it implies that

∣Jn − J ∣ ≤ 3σ(g)√
n

with Pr{∣Jn − J ∣ ≤ 3σ(g)√
n
} ≈ 0.997 assuming large n (6.2)

The constant σ2(g) is usually unknown but it can be estimated using Weak Law of Large Number
(WLLN) by

σ̂2
n(g) ∶= 1

n

n∑
i=1

g2(X(i)) − (Jn)2 P→ E(g2(X)) − J2 = σ2(g)
CLT also tells us that

√
n
(Jn − J)

σ

a.s.→
n→∞ N(0, 1)

In other words, for large n we have

∑n
i=1(Xi −E(X))√

ns(X) ∼ N(0, 1) or ( 1
n

n∑
i=1

Xi) −E(X) ∼ N(0,
Var(X)

n
)

One could say that Jn − J is approximately a standard normal variable scaled by s(X)√
n

, i.e. for large n

we have
P {Jn − z α

2

s(X)√
n
< J < Jn + z α

2

s(X)√
n
} ≈ 1 − α

For example, an estimate of the 95%-confidance interval for J is given by

(Jn − 1.96s(X)√
n

, Jn + 1.96s(X)√
n
) .

The estimation of J by Jn is referred as the crude Monte Carlo method. The disadvantage of the crude
Monte Carlo method is its slow rate of convergence. Since for large n we have s ≈ σ, we have to enlarge
our n by a factor of 100 to achieve a reduction of the standard error s(X)√

n
of a factor 0.1. Thus more

accuracy is ensured by more iterations.
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6.2 The Monte Carlo Techniques Applied to Option Pricing
The value of a call option at time t is the discounted expected terminal payoff, i.e.

C(t, S(t)) = e−r(T−t)EQ((S(T ) −K))+
where the expectation is taken under the risk neutral measure. The approximation of the option price
relies upon the Strong Law of Large Number (SLLN). To utilise SLLN , the underlying process, i.e.
S(t), is simulated from time 0 until time T for N times. For each of these trials, the payoff is computed
and discounted by e−r(T−t) to form Ci, C is then approximated by ĈN , where

ĈN = 1
N

N∑
i=1

Ci

Then by the SLLN, ĈN converges to the true expectation as N → ∞. Another issue that deserves
some special attention is the sources of error that could occur. The first type of error arises from the
randomness of MC. The second type of error arises from the discretization of the price and volume
processes. Suppose we have a close form solution, we wish to identify discretisation bias versus random
error, To find out how much of the discretisation error, one way is to keep running the Monte Carlo
simulations until we see the evidence of the bias. But how do we identify such evidence of bias? It can
be shown by the standard error, i.e. σ√

N
, if it exceeds 2 , i.e. statistically significant, it could worth

more effort to increase the number of time steps rather than increasing the number of simulations until
standard error is brought down. Once the standard error is brought down, one can start increasing the
number of MC runs. Some typical examples are the simulation of a Lognormal LIBOR model, which is
outside the scope of this thesis. (We refer readers to Brigo & Mercurio (2006) [9])
In the case of VWAP, the explicit solutions are known for S(t) and U(t) , we use the crude MC by
discretizing the solution of the Stochastic Differential Equations with respect to the two processes.
This algorithm to price European option via MC is summarised as follows.

• Simulate the underlying processes under the risk neutral measure N times,

• Calculate the discounted payoff for each of the simulations,

• Average the discounted payoffs, and

• Calculate the standard deviation of the solution.

To illustrate the Monte Carlo method, we first consider to price a standard European call that is
determined by the terminal stock price S(T ). The price of the option in this case is independent to the
evolution of S(t) between time 0 and time T . Let S(T ) evolves as a GBM, i.e.

S(T ) = S(0) exp((r − σ2

2 )T + σ
√

TZ) , where Z ∼ N(0, 1)
Then a simple Monte Carlo algorithm to estimate E(e−rt(S(T )−K)+) is the following.

for i = 1, ..., N do
generate Zi

set S(T ) = S(0)e(r−σ2
2 )T+σ√T Zi

set Ci = e−rT (S(T ) −K)+
end for
set ĈN = (C1 + ... +CN)/N
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However, in valuing more complicated options using more complicated models of the dynamics of the
underlying assets. It is often necessary to simulate a path over multiple intermediate date and not
just at the initial and terminal date [34]. For instance, in the case of simulating Asian options and
VWAP options, the price of the option depends on intermediate value of the terminal date. In the
latter, the VWAP is obtained by weighted against the stock prices by their trade volume. Hence,
the option price does depend on the intermediate value of both underlying stock price and volume.
The following algorithm is an illustration of simulating M paths with N number of discretisation
points.

for i = 1, ..., M do
for i = 1, ..., N do

generate Zij

set Si(tj) = Si(tj−1) exp ((r − σ2

2 )(tj − tj−1) + σ√(tj − tj−1)Zij)
end for
S̄ = (Si(t1) + ... + Si(tN))/N
Ci = e−rT (S̄ −K)+

end for
set ĈM = (C1 + ... +CM)/M

6.3 Problem Formulation
We consider to price the VWAP call option

C = e−rTEQ
⎛⎜⎜⎜⎜⎝

T∫
0

S(t)U(t)dt

T∫
0

U(t)dt

−K

⎞⎟⎟⎟⎟⎠

+

The risk neutral dynamics of the state variables are described as the same way as in 5.1. Nevertheless,
we restate as following

S(t) = S(0)ert+mt+XV G(t)+σBM W̄ (2)(t) (6.3)
dX(t) = λ(a −X(t))dt + σdW̄ (1)(t) (6.4)

U(t) =X(t)2 + δ (6.5)

where W̄ (2)(t) is a Brownian motion correlated with the Brownian motion W̄ (1)(t) for the volume
process Ut, XV G

t is a variance gamma process independent of W̄ (2)(t), and m = µ− 1
2σ

2
BM − log(1−θv−

1
2σ

2
V Gv)/v is a drift to ensure e−rtSt is a martingale. To price option via MC, we often need to simulate

the SDE. Three situation we may have:

• Case 1: Explicit solution to the SDE is known.

• Case 2: Explicit solution to the SDE is unknown, parameters are constant. Example: The CIR
model with constant parameters.

• Case 3: Explicit solution to the SDE is unknown, parameters are time varying. Example: The
CIR model with time varying parameters.

For case 1, the simulation would be exact in the sense that the underlying dynamics can be exactly
simulated at any given constant of time. For case 2, though no explicit solution to the SDE, we can
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still approximate the solution via a numerical scheme, i.e. an Euler or a Milstein scheme, however,
both methods induce more discretisation errors. For case 3, a direct MC simulation would not work
in general. But if the underlying dynamics are known, one can still simulate the SDE with a very
slow convergence. In this thesis, case 1 applies as we already have explicit solutions for both S(t)
and X(t). Hence, instead of simulate the SDE itself, we can just simulate the solution of the SDE,
and the algorithm is an exact simulations. To summarise, the simulation of the system of equations is
accomplished by

• Using exact solutions for S(t) and X(t) given by (equation (6.3) and equation (6.8)),

• Discretize the exact solutions of S(t) and X(t).
Different correlation levels between W̄ (1)(t) and W̄ (2)(t) are varied in the repetition of the numerical
experiments to observe the effect of the correlation on the price of the option.

6.4 Simulation of Squared Ornstein-Uhblenbeck
We assume the stock trading volume follows an squared Ornstein-Uhblenbeck process

U(t) =X2(t) + δ (6.6)

whereas X(t) is defined as the unique strong solution of the following SDE:

dX(t) = λ(a −X(t))dt + σOUdW (t) (6.7)

Here, W is a Brownian motion and λ, a are positive constants, and σOU ∈ R. Notice that the drift in
equation (6.7) is positive if X(t) < a and negative if X(t) > a; thus, X(t) is pulled toward level a, a
property generally referred to as mean reversion.
Equation (6.7) is also called a Vasicek model and its unique strong solution is given by

X(t) = e−λtX(0) + λ∫ t

0
e−λ(t−s)ads + σOU ∫ t

0
e−λ(t−s)dW (s)

= a − e−λt(a −X(0)) + σOU ∫ t

0
e−λ(t−s)dW (s)

= e−λtX(0) + a(1 − e−λt) + σOU ∫ t

0
e−λ(t−s)dW (s) (6.8)

Likewise, ∀ 0 < u < t,

X(t) = e−λ(t−u)X(u) + λ∫ t

u
e−λ(t−s)ads + σOU ∫ t

u
e−λ(t−s)dW (s)

= a − e−λ(t−u)(a −X(u)) + σOU ∫ t

u
e−λ(t−s)dW (s)

= e−λ(t−u)X(u) + a(1 − e−λ(t−u)) + σOU ∫ t

u
e−λ(t−s)dW (s) (6.9)

X(t) defines an Ornstein-Uhblenbeck. Note that equations (6.8) and (6.9) is used for simulation in
this thesis. From this it follows that, given X(0) and given constant t, the value X(t) is normally
distributed with mean

E(X(t)) = e−λ(t−u)X(u) + µ(s, t); µ(s, t) = a(1 − et−u) (6.10)

and covariance function
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Cov(Xu, Xt) = σ2

2λe−λ(u+t) (e2λ(u∧t) − 1) (6.11)

When u = t in equation (6.11), the variance is obtained as

V ar(Xt) = σ2
OU
2λ (1 − e−2λt), t ≥ 0 (6.12)

To simulate X at time 0 = t0 < t1 < ... < tn, one can set

X(ti) = e−λ(ti−ti−1)X(ti−1) + µ(ti−1, ti) + σOU(ti−1, ti)Zi

= e−λ(ti−ti−1)X(ti−1) + a(1 − e−λ(ti−ti−1)) +
√

σ2

2λ(1 − e−2λ(ti−ti−1))Z(ti) (6.13)

with Z1, ..., Zn are drawn standard normal random variates.
Our Monte Carlo analysis implemented in MATLAB is based on the algorithm described by equation

(6.13). This algorithm is an exact simulation in the sense that the distribution of X(t1), ...X(tn)
produces precisely of the Ornstein-Uhlenbeck process at time t1, ..., tn for the same initial value X(0).
Take the square of the above equation (6.13), we obtain the squared Ornstein-Uhlenbeck process U , i.e.

U(ti) = (X(ti))2
Nevertheless, it is more instructive to visualise the trajectories of an Ornstein-Uhlenbeck process and
a squared Ornstein-Uhlenbeck process. Fig.6.1 shows a realisation of an Ornstein-Uhlenbeck process
(Top) and a realisation of a squared Ornstein-Uhlenbeck process (Bottom). (MATLAB implementation
can be found in appendix C)
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Figure 6.1: Trajectories of an Ornstein-Uhlenbeck process and a Square Ornstein-Uhlenbeck process
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6.5 Simulation of the VG process
For a single dimensional VG process, there are several efficient methods including sequential sampling
and bridge sampling techniques for constructing the sample paths. Sequential sampling based methods
rely on the two different representations given in 4.1.1. That is, to write VG as either a subordinated
Brownian motion or a difference of two independent gamma processes. Bridge sampling based methods
sample the end of the path first, then fills in the rest of the path as needed. For the detail of simulating
VG via bridge sampling, we refer readers to [31]. Here we refer to the paper [31] and describe the
sequential sampling method in simulating a single dimensional VG process. There are three methods
one can consider. The first two based on the two representation presented in 4.1.1 and are “exact” in
the sense when the correct distribution is available. The algorithms are the following

Algorithm 1 (Simulating VG as time-changed Brownian Motion).

INPUT: VG parameters θ,σ,ν; time spacing ∆t1, ..., ∆tn such that ∑N
i=1 ∆ti = T

INITIALIZATION: Set X(0) = 0.

Loop from i = 1 to N :
1. Generate ∆Gi ∼ Γ(∆ti/ν,ν), Zi ∼ N(0, 1)
independently and independent of past r.v.s.
2. Return X(ti) =X(ti−1) + θ∆Gi + σ√∆GiZi.

Note: The letter G is reserved for the Gamma process in algorithm 1.

Algorithm 2 (Simulating VG as Difference of Gammas).

INPUT: VG parameters θ,σ,ν; time spacing ∆t1, ..., ∆tn such that ∑N
i=1 ∆ti = T

INITIALIZATION: Set X(0) = 0.

Loop from i = 1 to N :
1. Generate ∆γ+i ∼ Γ(∆ti/ν,νµ+), ∆γ−i ∼ Γ(∆ti/ν,νµ−)
independently and independent of past r.v.s.
2. Return X(ti) =X(ti−1) +∆γ+i −∆γ−i .

In this thesis, we have chosen to adopt algorithm 2 based on the difference of gamma parametrisation
as described in equations (4.14) and (4.15). The main reason is that this algorithm appears to be simpler
as it does not require the simulation of Brownian motion.

The third method is to approximate VG as a compound Poisson process. The main advantage of
the third method is its generality. In other words, it can be used for any Lévy process. The algorithm
can be found in [31].
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6.6 Simulation of the VWAP option

6.6.1 Parameter Values
The parameter values 2 used in Monte Carlo simulation are

S0 = 110; r = 0; K = 100; ρ = 0; r = 0

σVG = 0.1 σBM = (0.1, 0.2, 0.3, 0.4, 0.5)
ν = 0.1; θ = −0.14; σOU = 5; X(0) = 22; T = 1

m = µ − 1
2σ

2
BM − log

⎛
⎝

1
1 − θν + (σV G)2

2 ν

⎞
⎠/ν

N = 500 M = 106

∆γ−i ∼ Γ(∆ti
1
ν

,

√
θ2ν2

4 + σ2
VGν

2 − θν2 )

∆γ+ ∼ Γ(∆ti
1
ν

,

√
θ2ν2

4 + σ2
VGν

2 + θν2 )
6.6.2 Notation and Discretization
The VWAP option is priced over time period [tstart, tfinal] and set T = tstart − tfinal. In this thesis
we price from tstart = 0 to tfinal = 1. The time period is discretized into N = 500 time intervals of
equal with ∆t = T

N so that the simulation is performed at the times tstart = t0, t1, ..., tN = tfinal where
ti = i∆t, ∆ti =∆t, i = 1, ..., N . The simulation was performed M times.

S(ti) is obtained by using the exact solution of S(t) given by equation (5.1)

S(ti) = S(ti−1)em∆t+σBM
√

∆t(ρẐ(ti)+√1−ρ2Z̃(ti)), (6.14)

at each time step with S0 = S(0) and Z(ti) being drawn from N(0, 1) distribution3.
Similarly, X(ti) is obtained by using the exact solution of X(t) given by equation (6.8)

X(ti) =X(ti−1)e−λ∆t + a(1 − λ∆t) +
√

σ2
OU
2λ (1 − e−2λ∆t)Ẑ(ti)

Take the square of the above, we obtain the simulated square Ornstein-Uhblenbeck process.

6.6.3 The Algorithm
The algorithm in simulating the VWAP option combined all the algorithms discussed in this chapter,
which can be viewed as a combined algorithm of simulating a European call option, an Ornstein-
Uhlenbeck process and a geometric Lévy process with taking the jump component as a VG process. To
obtain the price of a VWAP option we have to use Monte Carlo techniques again. To simulate the trajec-
tories of the VWAP, we use the crude Monte Carlo method with 106 simulated paths to price the VWAP
option. The algorithm is summarised as the following:

set Sum 1=Sum 2=Sum 3=Sum 4=0
2σVG, σBM, ν, θ are, respectively, the skewness parameter, the diffusion parameter, the kurtosis parameter and the

symmetry parameter
3MATLAB default normal random number generator randn() was used to produce N(0, 1) random variable.

80



for j = 1, ..., M do
INITIALIZATION
for i = 1, ..., N do

Generate ∆γ+i ∼ Γ(∆ti/ν,νµ+), ∆γ−i ∼ Γ(∆ti/ν,νµ−)
Set X(ti) = 0
Return X(ti) =X(ti−1) +∆γ+i −∆γ−i
Generate a trajectory for stock price
Generate a trajectory for (trade )volume
Multiplying the stock price trajectory with volume trajectory S(t)U(t)
Sum 1=Sum 1+ volume
Sum 2=Sum 2+ price* volume

end for
ĀT = ∑price*volume∑volume
Sum 3=Sum 3+ĀT

Cj = e−rT (ĀT −K)+
Sum 4=Sum 4+Cj

end for
set ĈM = (C1 + ... +CM)/M

The MATLAB implementation can be found in appendix B.

6.6.4 Accuracy
In this chapter, we use the discrete-time definition of VWAP, so for each simulation j, the VWAP is
found as

Aj = ∑N−1
i=0 S(ti)U(ti)
∑N−1

i=0 U(ti)
This is repeated M = 106 times in this thesis. Finally, we approximate the expectation of Aj by

E(A) ≈ 1
M

M∑
j=1

Aj

and variance by

Var(A) = 1
M

M∑
j=1

A2
j − ( 1

M

M∑
j=1

Aj)2
and standard error by

s(A) =
HIIJ 1

M

M∑
j=1

A2
j − ( 1

M

M∑
j=1

Aj)2 (6.15)

Hence the MC standard error of the first moment E(AT ) is calculated as in equation (6.15).
The MC standard error of the second moment E(A2

T ) is given by

s(A) =
HIIJ 1

M

M∑
j=1

A4
j − ( 1

M

M∑
j=1

A2
j)2 (6.16)
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Chapter 7

Numerical Results

7.1 Results of the main model, the comparable results of the
GBM model and the change of correlation ρ

In this chapter we will discuss the implementation based on the lognormal and the GIG approximations
under the assumption that stock price evolves as a geometric Lévy process and volume evolves as a
shifted squared Ornstein-Uhlenbeck process. The computation was carried out by running 106 crude
Monte Carlo using MATLAB R2010b on a Macintosh Labtop with IntelCore I7. All calculations of
the first moments were performed symbolically leading to exact expressions for equations (5.12) and
(5.26). The subsequent multidimensional integrals were computed numerically using NIntegrate in
Mathematica and are very fast. Monte Carlo simulation was used to estimate the third VWAP moment
for pricing with the GIG. The Monte Carlo simulations were performed under MATLAB using n = 106

trajectories and 500 discretisation points over [0, T ]. Our parameter choices give rise to

St = S0ert+mt+XV G
t +σBM W̄ (2)

t

for the stock price dynamics and

Ut =X2
t ,

dXt = 2(22 −Xt)dt + 5dW̄ (1)
t , X0 = 22

for the volume dynamics. The Brownian motion W̄ (2)
t under the stock price dynamics correlated with

the Brownian motion W̄ (1)
t under the volume dynamics via the following equations

W̄ (1)
t = Ŵt

W̄ (2)
t = ρŴt +√1 − ρ2W̃t

[W̄ (1), W̄ (2)]t = ρt, ∀t ∈ [0, T ]
First, we set T = 1,ρ = 0 for traceability. Tables 7.1 and 7.2 display a range of computed moments and
the corresponding simulated values in our geometric Lévy model. The accuracy of the first moment
approximation is validated by the small Monte Carlo standard error and relative error 1. Fig.7.1
displays call option prices for different strike values (K) and different stock price volatilities (σBM ) for
both lognormal and GIG approximations. Fig.7.2 shows call option prices for different strike values

1This is computed as ∣MC estimate−Analytical approximation∣
MC estimate .
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Table 7.1: Numerical values of E(AT ) and Monte Carlo simulation of E(AT ) for varying stock price
volatility value σBM under the GL model, assuming ρ = 0.

σBM E(AT ) a Ê(AT ) MC std. er-
ror

Rel.error (%)

0.1 115.68 115.680 0.0099 0.0009
0.2 115.68 115.679 0.0154 0.0017
0.3 115.68 115.678 0.0203 0.0017
0.4 115.68 115.677 0.0286 0.0026
0.5 115.68 115.676 0.0358 0.0035

a Note that take ρ = 0, drift, symmetry,kurtosis,skewness parameters are held constant as µ = 0.1,σ =
0.1, θ = 0.14, v = 0.1 and σV G = 0.1
σBM does not enter into the computation of E(AT ), which leads to unchanging values for this column

Table 7.2: Numerical values of E(A2
T ) and Monte Carlo simulation of E(A2

T ) for varying stock price
volatility value σBM under the GL model, assuming ρ = 0.

σBM E(A2
T ) Ê(A2

T ) MC std. er-
ror

Rel.error (%)

0.1 13392.73 13480.69 2.3199 0.6525
0.2 13531.17 13619.98 3.695 0.6521
0.3 13766.66 13760.3 5.4215 0.6528
0.4 14106.67 14199.7 7.5000 0.6552
0.5 14562.29 14659.06 10.058 0.6602

(K) and different stock price volatilities (σBM ) under the Monte Carlo Simulation using n = 1, 000, 000
trajectories and 500 discretisation points over one year. Fig.7.4 shows computed prices arising from
different methods with σBM ranging over [0.2, 0.5]. Relative error plots comparing approximated prices
with simulated counterparts are presented in Fig.7.3.

(a) Prices from Lognormal distribution, ρ = 0 (b) Prices from GIG distribution, ρ = 0

Figure 7.1: Call option prices for different strike values K and stock price volatility σBM,ρ = 0 (GL).
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Figure 7.2: Simulated Call option prices (GL) for different strike price and different stock price volatility
σBM,ρ = 0.

For K = 100, the relative error of the lognormal approximation increases for σBM < 0.2, then
decreases in the volatility range [0.2, 0.5] with a tendency to increase. The relative error of the GIG
approximation stays beneath 1.26% over the entire range of volatilities.

For K = 110, the relative error of the lognormal approximation exceeds 10.44% for small σBM < 0.22,
the relative error of the GIG approximation appears to be quite stable and quite small. The relative
error of the GIG approximation stays beneath 1.46% over the entire range of volatilities.

For K = 120, the lognormal approximation deteriorates even more while the GIG approximation
works exceptionally well.

(a) K = 100, ρ = 0 (b) K = 110, ρ = 0 (c) K = 120, ρ = 0

Figure 7.3: Relative error (GL, ρ = 0) of option prices as a function of σBM. The blue line represents
Lognormal error and the pink dashed line is the GIG error.

Fig.7.4 shows how well the two approximation methods work. The GIG prices appear to be very
close to the Monte Carlo benchmark prices while the lognormal approximation tends to underprice
toward lower volatilities range.

84



Figure 7.4: Call option prices (GL) for K = 100 and different stock price volatility σBM,ρ = 0.
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Next, we compare against our results with the classical geometric Brownian model. The range
of computed moments and the corresponding simulated values are presented in Tables 7.3 and 7.4.
The accuracy of the first moment approximation is also validated by the small Monte Carlo standard
error and relative error. Fig.7.5 displays call option prices for different strike values (K) and different
stock price volatilities (σBM ) for both lognormal and GIG approximation. Fig.7.6 shows call option
prices for different strike and different stock price volatilities (σBM ) under Monte Carlo Simulation
using n = 1, 000, 000 trajectories and 500 discretisation points over one year. Fig.7.8 shows computed
prices arising from different methods with σBM ranging over [0.2, 0.5]. Relative error plots comparing
approximated prices with simulated counterparts are presented in Fig.7.7.

The parameters for asset price and volume were chosen to be as similar as possible to those in papers
Novikov et al. [62] and Stace [80] and it is worth mentioning that the computed parameter values are
quite similar to their results. The parameter choices give rise to

dSt = (0.1)Stdt + σBMStdW̄ (2)
t , S0 = 110

for the stock price dynamics and

Ut =X2
t ,

dXt = 2(22 −Xt)dt + 5dW̄ (1)
t , X0 = 22

for the volume dynamics. The Brownian motion W̄ (2)
t under the stock price dynamics correlated with

the Brownian motion W̄ (1)
t under the volume dynamics via the following equations

W̄ (1)
t = Ŵt

W̄ (2)
t = ρŴt +√1 − ρ2W̃t

[W̄ (1), W̄ (2)]t = ρt, ∀t ∈ [0, T ]
As usual, we set T = 1,ρ = 0 for traceability.
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Table 7.3: Numerical values of E(AT ) and Monte Carlo simulation of E(AT ) for varying stock price
volatility value σBM under the GBM model, assuming ρ = 0

σBM E(AT ) Ê(AT ) MC std. er-
ror

Rel.error (%)

0.1 115.68 115.4507 0.0068 0.2094
0.2 115.68 115.4428 0.0136 0.2162
0.3 115.68 115.4349 0.0205 0.2229
0.4 115.68 115.4271 0.0276 0.2295
0.5 115.68 115.4195 0.0349 0.2395

Table 7.4: Numerical values of E(A2
T ) and Monte Carlo simulation of E(A2

T ) for varying stock price
volatility value σBM under the GBM model, assuming ρ = 0.

σBM E(A2
T ) Ê(A2

T ) MC std. er-
ror

Rel.error (%)

0.1 13427.92 13374.76 1.5758 0.3975
0.2 13566.90 13511.73 3.2294 0.4083
0.3 13803.32 13746.04 5.0545 0.4167
0.4 14144.68 14085.19 7.1647 0.4224
0.5 14602.11 14540.34 9.7154 0.4249

(a) Prices from Lognormal distribution, ρ = 0. (b) Prices from GIG distribution, ρ = 0.

Figure 7.5: Call option prices for different strike values K and stock price volatility σBM,ρ = 0 (GBM).
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Figure 7.6: Simulated Call option prices (GBM) for different strike price and different stock price
volatility σBM,ρ = 0.

For K = 100 it can be seen that the relative error of the lognormal approximation stays within 3%
in the volatility range [0.2, 0.39] with a tendency to increase. The relative error for GIG approximation
stays beneath 0.6% over the entire range of volatilities.

For K = 110, the relative error for the lognormal approximation presents a stable decreasing trend
while the relative error for the GIG approximation presents a zigzag pattern for σBM < 0.2, this indicates
the GIG approximation appears to be unstable for numerical calculation in small volatilities range.
These findings for VWAP options do conform with a classical market observation for Asian options
in some sense, namely, for a small volatility of underlying process and near at-the-money options the
log-normal approximation is not too bad [46; 62]. For K = 120, from Fig.7.7c we see that the relative
error of both approximations reaching the maximum magnitude. Also, as σBM increases, the relative
error tapers off to zero.

(a) K = 100, ρ = 0 (b) K = 110, ρ = 0.3 (c) K = 120, ρ = 0.5

Figure 7.7: Relative error (GBM, ρ = 0) of option prices as a function of σBM. The blue line represents
Lognormal error and the pink line is the GIG error.
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Fig.7.8 shows how well the two approximation methods work. The GIG approximation appears to
be very close to the Monte Carlo benchmark while the lognormal approximation tends to overprice
toward higher volatilities range.

Figure 7.8: Call option prices (GBM) for K = 100 and different stock price volatility σBM,ρ = 0.
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Third, we examine the effect of the change of correlation level (ρ = 0.3, ρ = 0.5) between the driving
Brownian motions (W̄ (1)

t and W̄ (2)
t ) on the moments of VWAP and the price of the option. As indicated

in table 7.5, 7.6, 7.7 and 7.8, the relative error for both moments appears to be bigger than the original
scenario. For the GIG approximation, the relative error in Fig.7.14 exhibits some zigzag pattern in
low volatilities range σBM < 0.175. For the lognormal approximation, the accuracy becomes highly
unreliable. Fig.7.11 and 7.12 indicate that the lognormal prices are much lower than the Monte Carlo
benchmark prices over the entire range of volatilities [0.2, 0.5].
Table 7.5: Numerical values of E(AT ) and Monte Carlo simulation of E(AT ) for varying stock price
volatility value σBM under the GL model, assume ρ = 0.3.

σBM E(AT ) Ê(AT ) MC std. er-
ror

Rel.error (%)

0.1 115.68 116.23 0.0100 4.7
0.2 115.68 116.77 0.0156 0.935
0.3 115.68 117.31 0.0222 1.388
0.4 115.68 117.84 0.029328 1.833
0.5 115.68 118.37 0.0369 2.270

Table 7.6: Numerical values of E(AT ) and Monte Carlo simulation of E(AT ) for varying stock price
volatility value σBM under the GL model, assume ρ = 0.5.

σBM E(AT ) a Ê(AT ) MC std. er-
ror

Rel.error (%)

0.1 115.68 116.18 0.0100 4.7
0.2 115.68 116.68 0.0156 0.857
0.3 115.68 117.17 0.022201 1.271
0.4 115.68 117.66 0.029373 1.683
0.5 115.68 118.15 0.03678 2.091

Table 7.7: Numerical values of E(A2
T ) and Monte Carlo simulation of E(A2

T ) for varying stock price
volatility value σBM under the GL model, assuming ρ = 0.3.

σBM E(A2
T ) Ê(A2

T ) MC std. er-
ror

Rel.error (%)

0.1 13388.61 13610.97 2.3603 1.63
0.2 13514.44 13881.2 3.8019 2.64
0.3 13728.1 14255.77 5.6462 3.70
0.4 14035.72 14746.56 7.9126 4.82
0.5 14446.38 15369.81 10.7554 6.01

Table 7.8: Numerical values of E(A2
T ) and Monte Carlo simulation of E(A2

T ) for varying stock price
volatility value σBM under the GL model, assuming ρ = 0.5.

σBM E(A2
T ) Ê(A2

T ) MC std. er-
ror

Rel.error (%)

0.1 13381.29 13480.69 2.3199 1.59
0.2 13484.78 13619.98 3.695 2.69
0.3 13659.94 14221.3 5.6295 3.95
0.4 13910.88 14701 7.8855 5.37
0.5 14243.64 15311 10.718 6.97
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(a) Prices from Lognormal distribution, ρ = 0.3 (b) Prices from GIG distribution, ρ = 0.3

Figure 7.9: Call option prices for different strike values K and stock price volatility σBM,ρ = 0.3 (GL).

(a) Prices from Lognormal distribution, ρ = 0.5 (b) Prices from GIG distribution, ρ = 0.5

Figure 7.10: Call option prices for different strike values K and stock price volatility σBM,ρ = 0.5 (GL).
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Figure 7.11: Call option prices (GL) for K = 100 and different stock price volatility σBM, ρ = 0.3.

Figure 7.12: Call option prices (GL) for K = 100 and different stock price volatility σBM, ρ = 0.5.
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(a) K = 100, ρ = 0.3 (b) K = 110, ρ = 0.3 (c) K = 120, ρ = 0.3

Figure 7.13: Relative error (GL, ρ = 0.3) of option prices as a function of σBM. The blue line represents
Lognormal error and the pink dashed line is the GIG error.

(a) K = 100, ρ = 0.5 (b) K = 110, ρ = 0.5 (c) K = 120, ρ = 0.5

Figure 7.14: Relative error (GL, ρ = 0.5) of option prices as a function of σBM. The blue line represents
Lognormal error and the pink dashed line is the GIG error.

Three main points are illustrated based on the observations across models and correlation levels.
First, for the strike level where options are at-the-money, i.e. K = 110, the relative error of lognormal

approximation is found to be quite small under the GBM model but is found to be quite big in our
GL model. This indicates that the classical market observation for Asian options that the lognormal
outperforms others does not hold under our GL model. Indeed, the GIG approximation seems to be
more suitable for pricing small volatility and near at-the-money options based on the small size and
smooth pattern of the relative error. Overall, it appears that the lognormal approximation is unsuitable
for VWAP whereas the underlying stock price dynamics is described by a geometric Lévy process. This
is different from the classical observation for Asian options (where the underlying asset dynamics follows
a geometric Brownian motion) that lognormal approximations outperform others (See papers [46; 62]).
When the driving Brownian motions are correlated, both approximations deteriorate (See Fig.7.13 and
Fig.7.14). Nevertheless, the accuracy of GIG approximation remains considerably reliable, despite some
zigzag pattern at low volatility range, i.e. σBM < 0.175.

Second, the zigzag pattern that is usually found in the relative error plot of the GIG approxima-
tion towards small volatilities range in the GBM model seems to disappear in our GL model. The
GIG approximation seems to be quite stable and provides more reliable accuracy than the lognormal
approximation.

Third, as the correlation level changes, the capability of both approximations deteriorates. The rela-
tive error of the GIG approximation is still considerably small, but the zigzag pattern in low volatilities
range may suggest some instability of the numerical calculations. On the other hand, the size of the
relative error suggests the lognormal approximation is more vulnerable than the GIG approximation in
response to the change of correlation level. The option prices comparison plots indicate the lognormal
approximation significantly underprice the VWAP option. This observation relates to the phenomenon
of volatility skew and smiled mentioned earlier in 1.1.1 and does conform with the classical observation
that out-of-the-money options tend to be underpriced in model with continuous trajectories [83].
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Overall, it appears that the lognormal approximation is unsuitable for VWAP whereas the underlying
stock price dynamics is described by a geometric Lévy process, which is different from the classical
observation for Asian options that lognormal approximation outperforms. Despite some zigzag pattern
at low volatility range, the accuracy of GIG approximation remains considerably reliable.

Table 7.9 summarises the above discussion and provides a performance comparison of the two approx-
imation methods under the two pricing setups for different strike values (K) and stock price volatilities
(σBM).

Table 7.9: Relative error comparison across methods and models

σBM ∈ (0, 0.2) σBM ∈ [0.2, 0.5) σBM ∈ [0.5, 1]
GL

K = 100 GIG Lognormal GIG
K = 110 GIG GIG Lognormal
K = 120 GIG GIG GIG
GBM

K = 100 Both are fine GIG GIG
K = 110 Lognormal. Instability over GIG GIG GIG
K = 120 Lognormal. Instability over GIG GIG GIG
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7.2 Comment on MC implementation
The relative error plots suggest that the GIG approximation appears to be more successful in approxi-
mating accurate prices than the lognormal approximation. However, it shall be stressed that the crude
MC algorithm implemented in MATLAB requires significant computational effort: The CPU time to
obtain 100 option prices against 20 strike prices is about 13 hours in our setup while only 8 hours are
needed in the geometric Brownian motion setup, assuming a MC simulation with 106 trials is used and
the parameter values are chosen as close as possible to those in paper [62]. Despite the fact that this
time could be significant reduced if a lower-level programming language (e.g. C++) could be used,
some possible reasons for this disappointment are worth mentioning. First, despite the simplicity, a
well-known drawback of the crude Monte Carlo methods is their slow convergence, which can make
the estimation process very time consuming if a more precise estimator is required. Second, along with
the mentioned advantages, a difficulty in using the VG process and the more general Lévy process is
that they require more advanced stochastic analysis. In the case of valuing a path-dependent option, a
closed-form solution cannot be found [38]. Various techniques are suggested to improve the efficiency,
such as stratified sampling, bridge sampling and Quasi-Monte Carlo (QMC) methods have been devel-
oped. In the paper [72], a time-changed Brownian motion gamma bridge 2 is introduced, along with
stratified sampling and QMC to reduce variance. The paper by Avramidis and L’Ecuyer (2006) [3]
introduces a difference of gamma bridge 3 combined with QMC. An excellent tutorial overview of VG
and Monte Carlo can be found in Fu (2000) [31].

2Bridge sampling for the time-changed Brownian motion representation
3Bridge sampling combined with randomised QMC for the difference-of-gamma representation
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Chapter 8

Conclusions and perspective

8.1 Overall Conclusion
This thesis seeks to extend the previous work [62] on the pricing of VWAP options 1, by allowing the
stock price to be modelled with a Lévy process. The semi-analytical approach developed by the paper
Novikov et al. [62] was studied and explored. Explicit formulae for the moments of VWAP were found
under the geometric Lévy process setup.

Having thoroughly studied the Lévy process (the underlying stock price process of the VWAP) in
Chapters 2 and 4, analytical expressions for the first two moments of VWAP were presented and numeri-
cally implemented based on the semi-analytical method developed by Novikov et al. The approximation
for the VWAP option prices were obtained by matching the first three (two) moments of the VWAP to
a GIG (lognormal) distributions.

A Monte Carlo analysis was then performed to benchmark the numerical results for the moments
of VWAP and call option prices. It was found the GIG approximation provides a fairly accurate
approximation when the underlying stock price is assumed to evolve as a geometric Lévy process. On
the other hand, the lognormal approximation that usually works well in pricing low volatilities and
near at-the-money Asian option under the classical geometric Brownian motion model appears to be
unreliable. It tends to underprice the VWAP option at all level of volatilities and strike values under
the geometric Lévy model. Overall, under the geometric Lévy pricing model, the GIG distribution
was found to be successful in approximating accurate VWAP option prices for all level of volatilities
and strike values. The capability of the GIG approximation only deteriorates slightly as correlation is
imposed between price and volume.

Hence, to approximate the price of VWAP options via the moment matching technique under a
Lévy based model, the GIG approximation is preferred.

8.2 Recommendation for Future Research
If one were to conduct further research from the viewpoint of the above conclusion, one possible extension
to this work is to match higher order moments by using a better numerical method such as the Gram-
Charlie expansion.

Also, to achieve a higher level of accuracy when running MC simulations, a Quasi Monte Carlo
method that uses low discrepancy sequences (LDS) could be considered. An example of LDS is the
Sobol sequences. Sobol sequences possess all the statistical properties of random sequences, they often

1In the original work, stock price is assumed to evolve as a GBM
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lead to a faster convergence to the desired simulated values when normal distribution is sampled. These
sequences return normal pseudorandom variates without any random errors.
To utilise LDS, one may consider some advanced Monte Carlo algorithms, such as

• A time-changed Brownian motion gamma bridge in conjunction with stratified sampling and Quasi
Monte Carlo (QMC);

• A difference of gamma bridge in conjunction with Randomised Quasi Monte Carlo (RQMC).

In this thesis, we considered only a one-dimensional problem. Hence, another possible extension
of this thesis is to extend the pricing method to VWAP options which depends on more than one
underlying asset. In particular, it is useful to develop a multidimensional (Lévy) model that takes into
account the dependence between various assets and dependence between prices and volume.

Lastly, from a practical point of view, the next step is to develop an effective hedging strategy.
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Appendix A

Mathematical Preliminaries and the
calculation of covariance function

A.1 Mathematical Preliminaries
This section summarises some Mathematical results and definitions that have been used in this thesis.
These results are thoroughly described by various textbooks in Mathematical Finance: Cont & Tankov
(2004), Klebaner (2005), Glasserman (2003), Protter (2003 or 2005) and Musiela & Rutkowski (2005).
As well as Lecture notes in Analysis, Stochastic Process & Stochastic Analysis.

Definition A.1 (σ-algebra). Given the non empty set Ω, a collection of subsets of Ω,F , is called a
σ-algebra if

• The empty set, ∅, is in F . i.e. ∅ ∈ F ,

• If a set, E, is an element of F , then the complement of E, EC , is also in F ,

• If a sequence of sets E1, E2, ... belongs to F . Then so does their union, i.e. ∪∞i=1Ei ∈ F ,

• The pair (Ω,F) is called a measurable space.

Definition A.2 (Probability Measure). A probability measure, P, on a measurable space (Ω,F) is a
function P ∶ F ↦ [0, 1] such that

• P(∅) = 0,P(Ω) = 1

• if E1, E2, ... ∈ F and {Ei}∞i=1 is disjoint then P(∪∞i=1Ei) = ∑∞i=1 P(Ei)
Definition A.3 (Equivalence Probability Measure). Given a non empty set Ω and a σ-algelbra, F , of
Ω. Then two different probability measure P and Q are said to be equivalent if they agree on which
sets in F have probability 0.

Definition A.4 (Probability Space). The triplet (Ω,F ,P) is called a probability space.

Definition A.5. If Ω = Rd, then the Borel σ-algebra is defined as the σ-algebra generated by the open
set on Rd

Definition A.6 (F -measurable). Given the probability space (Ω,F ,P), the the function f ∶ Ω→ Rd is
called F-measurable if

f−1(A) ∶= {ω ∈ Ω ∶ f(ω) ∈ A} ∈ F
for all open sets A ∈ Rd.
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Definition A.7 (Random Variable). A random variable X is F -measurable function

X ∶ Ω(→ Rd

Definition A.8 (Cumulative Distribution Function). The cumulative distribution function of the ran-
dom variable X is the function F given by

F (x) = P(X ≤ x), x ∈ R
Definition A.9 (Probability Density Function). In case where distribution function F in A.8 is differ-
entiable, the probability density function f(x) of F (x) is

f(x) = dF (x)
dx

Definition A.10 (Gaussian density). The probability of the Gaussian distribution with mean µ and
variance σ2 is given by

f(x) = 1√
2πσ2

exp(−(x − µ)
2σ2 ) , ∀x ∈ R

Shorthand notation N(µ,σ2) is often used to denote this distribution. The special case when µ = 0
and σ2 = 1, i.e. N(0, 1), is called the standard Gaussian distribution or standard normal distribution.

Definition A.11 (Expectation). Given the random variable X on the probability space (Ω,F ,P). If
∫Ω ∣X(ω)∣dP(ω) <∞, then the expectation of X is

EX = ∫Ω
X(ω)dP(ω)

In one dimension, the expectation of the continuous random variable X with probability density function
f(x) is

EX = ∫ ∞
−∞ xf(x)dx

Definition A.12 (Conditional Expectation). Let (Ω,F ,P) be a probability space, let G be a sub-σ-
algebra of F , and let X be a random variable that is either nonnegative or integrable. The conditional
expectation of X given G, denoted by E(X ∣G), is any random variable that satisfies

• Measurability: E(X ∣G) is G-measurable, and

• Partial averaging:
∫

A
E(X ∣G)(ω)dP(ω) = ∫

A
X(ω)dP (ω), ∀A ∈ G

Proposition A.1 (General Properties of Condition Expectation). Given the random variable ξ and ζ
on (Ω,F ,P), then the following properties hold

1. Linearity: E(aξ + bζ) = aE(ξ) + bE(ζ) ∀ a, b ∈ R,

2. Tower Law: If H ⊂ F , then E(E(ξ∣F)∣H) = E(ξ∣H)
3. Iterated Expectation (Special Case of Tower Law): E(E(ξ∣F)) = Eξ
4. E(ξζ ∣G) = ξE(ζ ∣G) if ξ is G-measurable (taking out what is known)

5. Comparison: If ξ ≤ ζ, i,e, P(ξ ≤ ζ) = 1, then

E(ξ) ≤ E(ζ)
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6. Jensen’s inequality : if ϕ is convex, real-valued function defined on R, then

ϕ(Eξ) ≤ E(ϕ(ξ)).
Definition A.13 (Variance). Given the random variable X on the probability space (Ω,F ,P), then
the variance of X is given by

V ar(X) = E((X −EX)2)
It is trivial to show

V ar(X) = EX2 − (EX)2
Definition A.14 (Covariance). Given the random variables X, Y on the probability space X, Y on the
probability space (Ω,F ,P), then the covariance of X and Y is given by

Cov(X, Y ) = E(X −EX)(Y −EY )
or, in a more convenient form

Cov(X, Y ) = EXY −EXEY

Definition A.15 (Correlation Coefficient). Let X, Y be random variables on the probability space
(Ω,F ,P). Further, assume that V ar(X) > 0 and V ar(Y ) > 0. Then the correlation coefficient of X

and Y is
ρ(X, Y ) = Cov(X, Y )√

V ar(X)V ar(Y )
The is often call correlation.

Definition A.16 (Standard Deviation). The standard deviation of random variable X is given by

σ(X) =√V ar(X)
The expectation is also called the first moment or mean, and the variance as the second moment.
Moments can be defined for any order.

Definition A.17 (ith Moment). . The ith moment of the random variable X is given by

mi = E(Xi)
Definition A.18 (Independent). Let (Ω,F ,P) be a probability space. Let F and H be sub-σ-algebras.
If A ∈ G and B ∈H, we have

P(A ∩B) = P(A)P(B)
then we say that these two σ-algebras are independent.

Definition A.19 (Almost Sure Convergence). A sequence of random variable (Xn)n≥1 converges almost
surely to a random variable X if

B = {ω ∶ lim
n→∞Xn(ω) ≠X(ω)} has P(B) = 0.

or
P( lim

n→∞Xn =X) = 1
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Almost sure convergence is often abbreviated by

lim
n→∞Xn =X a.s.

Definition A.20 (LP-Space). Given the random variable X ∶ ω → Rd, then we define the L2-norm of
X, denoted by ∣∣X ∣∣2, by

∣∣X ∣∣2 =
√
∫Ω
∣X(ω)∣2dP(ω)

The L2(P)-space is given by

L2(P) = L2(Ω) = {X ∶ Ω→ Rd; ∣∣X ∣∣2 <∞}
Definition A.21 (Convergence in Lp). A sequence of random variables (Xn)n≥1 converges in Lp to X

(where 1 ≤ p <∞) if ∣Xn∣, X are in Lp and

lim
n→∞E(∣Xn −X ∣p) = 0

Definition A.22 (Converge in Distribution). The sequence of distributions of r.v.’s X1, X2, ... converges
to the distribution of r.v. X if

lim
n→∞FXn(x) = FX(x)

for any x from the set of continuity points of FX(x) .
Notations: Xnd

d→X

Definition A.23 (Weak Convergence). The sequence X1, X2, ... converges weakly to X if

lim
n→∞E(F (Xn)) = E(f(X))

for every bounded continuous function f(x) Notations: Xnd
d→X

Theorem A.2 (Weak Law of Large Numbers (WLLN)). Let X1, X2, ..., Xn be independent random
variables with finite expected value E(Xi) = µ and finite variance V (Xi) = σ2. Let Sn = ∑n

i=1 Xi.
Then for any ϵ > 0

P(∣Sn

n
− µ∣ ≥ ϵ) n→∞(→ 0

equivalently,
P(∣Sn

n
− µ∣ < ϵ) n→∞(→ 1

Let
ξn = ∑n

i=1(Xi − µ)√
nσ

, Φ(x) = 1√
2π ∫

x

−∞ e−x2
2 dx

The following theorems are of fundamental importance to option pricing.

Theorem A.3 (Central Limit Theorem (CLT)). Let X1, X2, ..., Xn be a sequence of i.i.d random
variables such that E(Xi) = µ,E(X2

i ) <∞ and V ar(Xi) = σ2 > 0. Then

ξn
d→ ξ ∼ N(0, 1)

or,equivalently, for all x ∈ (−∞,∞)
P(ξn ≤ x)→ Φ(x)
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Suppose X is a random variable and we need to evaluate

J = E(g(X)),
where g(X) is given function. To estimate J we need to generate a sequence of independent random
variables X1, X2, ..., Xn, such that P(Xi ≤ x) = P(X ≤ x) and then according to WLLN we have

Jn ∶= 1
n

n∑
i=1

g(Xi) P→ E(g(X))
To estimate an accuracy of the approximation, we assume

V ar(g(X)) ∶= σ2(g) <∞
and note

V ar(Jn) = V ar(g(X))
n

= σ2(g)
n

Then, applying CLT we have the convergence (Jn − J)√n
d→ N(0,σ2(g)). In particular it implies that

P(∣Jn − J ∣ ≤ 3σ(g)√
n
≈ 0.997) for large n

The constant σ2(g) is usually unknown but it also can be estimated using WLLN:

σ̂n(g) ∶= 1
n

n∑
i=1

g(Xi) − (Jn)2 P→ E(g2(X)) − J2 = σ2(g)
Theorem A.4 (Strong Law of Large Number (SLLN)). Let X1, X2, ..., Xn be independent random
variables with finite expected value E(Xi) = µ and finite variance V (Xi) = σ2 = σ2

Xi
< ∞. Let Sn =

∑n
i=1 Xi. Then

lim
n→∞

Sn

n
= lim

n→∞
1
n

n∑
i=1

Xi = µ a.s. and in L2

Then for any ϵ > 0,
P(∣Sn

n
− µ∣ > ϵ) n→∞(→ 0

In this thesis, we work under a probability space (Ω,F ,P) equipped with filtration {Ft, t ∈ [0, T ]}
Definition A.24 (Filtration). A filtration or information flow on (Ω,F ,P) is an increasing family of
σ-algelbra {Ft, t ∈ [0, T ]} for all 0 ≤ s ≤ t, Fs ⊆ Ft ⊆ F .
Notation: F = {Ft, t ∈ [0, T ]}
Definition A.25 (F-adapted). A real-valued stochastic process X = {X(t), t ∈ [0, T ]} defined on
(Ω,F,P) is said to be F-adapted if for any t ∈ [0, T ] the real-valued random variable X(t) is Ft−measurable,
i.e. for any x ∈ R the event {X(t) ≤ x} belongs to the σ-algebra Ft.

We usually say a process is adapted, rather than F-adapted. In this thesis, we consider the natural
filtration, which is the filtration generated by X.
Notation (natural filtration): FX

t = σ(Xu∣u < t) or FX
t = σ{Xs, u ≤ t} A stochastic process is a r.v. that

is indexed by time. Time can either be discrete or continuous.

Definition A.26 (Stochastic Process). A stochastic process is a parameterised collection of random
variables

{X(t), t ∈ T}
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defined on a probability space (Ω,F ,P) taking values in Rd

Definition A.27 (Stopping time). A random variable τ ≥ 0 is said to be a stopping time or, Markov
time w.r.t. Ft if

{τ ≤ t} ∈ Ft for any t ≥ 0

Definition A.28 (Predictable process (discrete-time)). A stochastic process H is said to be predictable
if Hn is Hn−1 measurable.

Definition A.29 (Predictable process (Continuous-time)). Process H is predictable if it satisfies one
of the following

1. a left-continuous adapted process, in particular, a continuous adapted process.

2. a limit (with a.s. convergence in probability) of left-continuous adapted processes.

3. a regular right-continuous process such that, for any stopping time τ, Hτ is Fτ−-measurable, the
σ-field generated by sets A⋂{T < t}, where A ∈ Ft

4. a Borel-measurable function of a predictable process

Definition A.30 (Martingale). Let a process Zt be adapted to F(t). We say that Z(t) is a martingale
with respect to (F(t),P) if

E(Z(t)∣F(s)) = Z(s) for any t ≥ s

Interpretation: Martingale have no systematic stochastic drift.
Notation: M(F(t),P) is a class of all martingales w.r.t. given F(t) and P

The Stochastic Exponential is the basic building block of the pricing framework in this thesis. This
important concept is introduced as follows.
Let W be a standard Brownian motion defined on a filtered probability space (Ω,F,P) for a real-valued
process λ, we define the real-valued F-adapted process X by setting

X(t) = I(t)(λ) = ∫ t

0
λ(s)dW (s), ∀t ∈ [0, T ]

The process X defined in this way is, of course, a continuous local martingale under P with respect to
F.

Definition A.31 (Stochastic Exponential). The stochastic exponential (also known as the Doléan
exponential or exponential martingale) of X is given by the formula, for t ∈ [0, T ],

E(t)(X) = E(t)(∫ ⋅
0
λ(s)dWs) = exp(∫ t

0
λ(s)dWs − 1

2 ∫
t

0
∣λ(s)∣2ds) ,

that is, E(t)(X) = exp(X(t) − 1
2 [X, X](t)). More generally, for any continuous local martingale M we

set E(t)(M) = exp(M(t) − 1
2 [M, M](t)) for t ∈ [0, T ].

Lemma A.5. The stochastic exponential of X is the unique solution Y of the SDE

dY (t) = Y (t)λ(t)dWt = Y (t)dX(t)
with initial condition Y (0) = 1

Remark A.1. It follows immediately from Lemma A.5 that
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• dE(t)(X) = E(t)(X)λ(t)dWt = E(t)(X)dX(t).
• For any continuous local martingale M , the stochastic exponential E(M) is the unique solution

Y of the SDE
dY (t) = Y (t)dM(t)

with the initial condition Y (0) = 1.

Definition A.32 (Markov processes). Let (Ω,F ,P) be a probability space, T a fixed positive number,
and let F(t) for 0 ≤ t ≤ T be a filtration of sub σ-algebra of F . An adapted stochastic process
X(t), 0 ≤ t ≤ T is called Markov process w.r.t. the filtration F(t) for 0 ≤ t ≤ T if for all bounded
real-valued Borel function f defined on Rd then

E(f(t, X(t))∣) = E(f(t, X(t))∣X(s)) a.s.∀0 ≤ s ≤ t

Proposition A.6 (Compensated compound Poisson process). Let X(t) be a compound Poisson process
with jump size on [ϵ, 1) with jump measure N(⋅), the compensated compound Poisson process Xϵ(t)

Xϵ(t) = ∫ t

0 ∫{ϵ≤1} xÑ(ds, dx) (A.1)

= ∫ t

0 ∫R/{0} xN(ds, dx) −∫ t

0 ∫R/{0} xν(dx)ds (A.2)

= ∫ t

0 ∫R/{0} xÑ(ds, dx) (A.3)

is a martingale.

The following definition plays an important role in probability theory.

Definition A.33 (Laplace Transform). The Laplace Transform of a locally integrable function f is
defined by

F(λ) = ∫ ∞
0

e−λxf(x)dx

Laplace Transform is one of the central tool in this thesis.

Definition A.34 (moment generating function). The moment generating function of a random variable
is defined by

ϕX(u) = E(euX)
Notice that if X has probability density f and X is positive, then we have the Laplace Transform

of (at least formally)
ϕX(−λ) = E(e−λX) = ∫ ∞

0
e−λxf(x)dx

This is the Laplace Transform of f . It is also known as the moment generating function.

Theorem A.7 (First Fundamental Theorem of Asset Pricing). The market model defined by (Ω,F ,F,P)
and the asset price {S(t), t ∈ [0, T ]} is arbitrage-free iff there exists a probability measure Q ∼ P such
that the discounted assets {Ŝ(t), t ∈ [0, T ]} are martingales w.r.t. Q

Theorem A.8 (Second Fundamental Theorem of Asset Pricing). A market defined by asst (S1
t , ..., Sm

t )t∈[0,T ],
described as stochastic process on (Ω,F ,F,P) is complete iff there is a unique martingale measure Q
equivalent to P.

Theorem A.9 (No Free Lunch). We say that a price process (càdlàg process) S = {St, 0 ≤ t ≤ T} admits
no free lunch iff there is a probability measure Q equivalent to P such that S is a martingale under Q.
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A.2 Calculation of Covariance functions
The details on the calculation of the different covariance functions required in this thesis is the following.
To compute the double integral of equation (5.17) we need

σ11 = Cov(a∫ T

t
Ysds∫ T

t
Ysds) = E(a2 ∫ T

t
∫ T

t
YsYududs)

= a2 ∫ T

t
(∫ s

t
E(YsYu)du +∫ T

s
E(YsYu)du)ds

= a2 ∫ T

t
(∫ s

t

1
2κe−κ(u+s)(e2κu − 1)du +∫ T

s

1
2κe−κ(u+s)(e2κs − 1))ds

where the last expression can be easily computed in a symbolic package such as Mathematica.
Next

σ22 = Cov(YT , YT ) = 1
2κ(1 − e−2κT )

σ33 = Cov(Yt, Yt) = 1
2κ(1 − e−2κt)

σ12 = Cov(a∫ T

t
Ysds, YT) = ∫ T

t

a

2κ(e2κt − 1)ds

σ23 = Cov(YT , Tt) = 1
2κe−κ(t+T )(e2κt − 1)
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Appendix B

Mathematica codes of the analytical
approximation and MATLAB codes
of simulations for the main
(Geometric Lévy) model

The following implements the semi-analytical method presented previously to obtain the price of VWAP
options. We utilise the Mathematica codes first developed by Tim Ling.

To keep things simple, we compute moments given one set of parameters as following; start with
notebook GL 2nd moment basic rho0.nb

S0=110; σ=5; T=1; λ=2; b=0; ρ=0; σVG=0.1; σBM=0.1; σRHO=σBM*
√

1 − ρˆ2;

Following chapter 5.4 in thesis, we have the following:

m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;

Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]
PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,

{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

−( (σ11−σ132
σ33 )(y−µx2− (z−µx3)σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))
−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)

G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];
F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];
A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;
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B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;
Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];
Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];
JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )

4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;

HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;

constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;

L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];
Check that the coefficient H, J, L are correct

FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]

0

Check that the coefficient A, B, C, D, F are correct

FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]
0

OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;

Now the outer integral

*)*)*)

PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];
expon1[x , y ] = 1

2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))

+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;

G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];
F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];
A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;
B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;
Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];
Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];
(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)

FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]
0

OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;

(*Now need to collect coefficients for the triple integral*)

exponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc
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+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))
+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;

C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];
Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;
Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;
Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;
Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];
Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];
Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];
Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];
Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];
Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];
FullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ v

+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]
0

κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;

J = JYt;J = JYt;J = JYt;

H = HYt2;H = HYt2;H = HYt2;

c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)

c2 = −zσ2 +H;c2 = −zσ2 +H;c2 = −zσ2 +H;

c3 = −2qσ;c3 = −2qσ;c3 = −2qσ;

gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;

(*Now to compute all the covariance*)

σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;

σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;
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σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;

σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;

σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;

σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;

σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;

(*σ11 and σbb were precomputed*)

σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;

σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;

σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;

σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)

σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;

Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];
ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:= (n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/v)

cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]
(*Compute first moment*) S0 = 110;S0 = 110;S0 = 110;

σ = 5;σ = 5;σ = 5;

T = 1;T = 1;T = 1;

λ = 2;λ = 2;λ = 2;

b = 0;b = 0;b = 0;

a = 22;a = 22;a = 22;

ρ = 0;ρ = 0;ρ = 0;

σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)

σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)

σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;

v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)

θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)

µ = 0.1;µ = 0.1;µ = 0.1;

g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;

µx1 = 0;µx1 = 0;µx1 = 0;

µx2 = 0;µx2 = 0;µx2 = 0;

µx3 = 0;µx3 = 0;µx3 = 0;

µa = 0;µa = 0;µa = 0;

µb = 0;µb = 0;µb = 0;
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(*ψ[1]; *)(*ψ[1]; *)(*ψ[1]; *)

Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];

dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;

(*moment1 = NIntegrate [−S0 ∗ e(µ+0.5∗ρ∧2∗σBM∧2)∗tdzPhi[q, t],{q, 0,∞},{t, 0, T}] ; *)(*moment1 = NIntegrate [−S0 ∗ e(µ+0.5∗ρ∧2∗σBM∧2)∗tdzPhi[q, t],{q, 0,∞},{t, 0, T}] ; *)(*moment1 = NIntegrate [−S0 ∗ e(µ+0.5∗ρ∧2∗σBM∧2)∗tdzPhi[q, t],{q, 0,∞},{t, 0, T}] ; *)

moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]
TimeUsed[]TimeUsed[]TimeUsed[]
115.681

11.651

Now to set up the second moment

OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/
(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2

Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/

(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;

gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2

−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2

+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)
−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2

−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/
(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;
Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T

0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];

dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);
moment2 =moment2 =moment2 =
NIntegrate [S02qExp[s ∗ ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],
{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+
NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],
{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];
TimeUsed[]TimeUsed[]TimeUsed[]
Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]
Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]
Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]
Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]
Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]
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Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]
First moment = 115.681
Second moment = 13392.7
Variance = 10.7393
SD = 3.27709
mu tilde = 0.0503521
sig tilde = 0.0283231

To see how µ̃(t) and σ̃(t) evolve over time, we use notebook GL LNParEvoln plot rho0.nb. Every-
thing has been done previously follows.

S0=110; σ=5; T=1; λ=2; b=0; ρ=0; σVG=0.1; σBM=0.1; σRHO=σBM*
√

1 − ρˆ2;

Following chapter 5.4 in thesis, we have the following:

m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;

Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]
PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,

{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

−( (σ11−σ132
σ33 )(y−µx2− (z−µx3)σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))
−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)

G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];
F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];
A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;
B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;
Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];
Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];
JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )

4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;

HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;

constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;

L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];
Check that the coefficient H, J, L are correct

FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]

0
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Check that the coefficient A, B, C, D, F are correct

FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]
0

OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;

Now the outer integral

*)*)*)

PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];
expon1[x , y ] = 1

2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))

+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;

G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];
F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];
A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;
B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;
Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];
Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];
(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)

FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]
0

OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;

(*Now need to collect coefficients for the triple integral*)

exponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))
+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;

C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];
Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;
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Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;
Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;
Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];
Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];
Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];
Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];
Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];
Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];
FullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ v

+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]
0

κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;

J = JYt;J = JYt;J = JYt;

H = HYt2;H = HYt2;H = HYt2;

c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)

c2 = −zσ2 +H;c2 = −zσ2 +H;c2 = −zσ2 +H;

c3 = −2qσ;c3 = −2qσ;c3 = −2qσ;

gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;

(*Now to compute all the covariance*)

σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;

σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;

σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;

σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;

σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;

σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;

σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;

(*σ11 and σbb were precomputed*)

σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;

σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;

σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;

σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)
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σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;

Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];
ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:= (n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/v)

cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]
(*Compute first moment*) S0 = 110;S0 = 110;S0 = 110;

σ = 5;σ = 5;σ = 5;

T = 1;T = 1;T = 1;

λ = 2;λ = 2;λ = 2;

b = 0;b = 0;b = 0;

a = 22;a = 22;a = 22;

ρ = 0;ρ = 0;ρ = 0;

σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)

σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)

σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;

v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)

θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)

µ = 0.1;µ = 0.1;µ = 0.1;

g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;

µx1 = 0;µx1 = 0;µx1 = 0;

µx2 = 0;µx2 = 0;µx2 = 0;

µx3 = 0;µx3 = 0;µx3 = 0;

µa = 0;µa = 0;µa = 0;

µb = 0;µb = 0;µb = 0;

Now, the moments derived in Chapter 5 are solved for each time interval [0, 1]. At each time, the
approximations to the mean (equation 5.5) and variance (5.6) of the VWAP are used to obtain the
values of µ̃(t) and σ̃(t). In Mathematica, we have the following

Clear[muPoints, sigmaPoints, xPoints, muTilde, sigmaTilde]Clear[muPoints, sigmaPoints, xPoints, muTilde, sigmaTilde]Clear[muPoints, sigmaPoints, xPoints, muTilde, sigmaTilde]
TEnd = 1;TEnd = 1;TEnd = 1;

incrementSize = 0.01;incrementSize = 0.01;incrementSize = 0.01;

i = 1;i = 1;i = 1;

Do[Do[Do[
Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T

0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];

dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;
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moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}];moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}];moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}];
(*(*(*

NowtosetupthesecondmomentNowtosetupthesecondmomentNowtosetupthesecondmoment

*)*)*)

OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/
(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2

Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/

(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;

gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2

−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2

+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)
−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2

−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/
(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;
Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T

0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];

dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);
moment2 = NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ ψ[1] + 0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],moment2 = NIntegrate [S02qExp[s ∗ ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],moment2 = NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],
{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+
NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ rho∧2 ∗ sigmaBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],
{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];
muTilde[i] = Log[moment1/S0]/T ;muTilde[i] = Log[moment1/S0]/T ;muTilde[i] = Log[moment1/S0]/T ;

sigmaTilde[i] = Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ] ;sigmaTilde[i] = Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ] ;sigmaTilde[i] = Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ] ;
i++,i++,i++,

{T, incrementSize, TEnd, incrementSize}]{T, incrementSize, TEnd, incrementSize}]{T, incrementSize, TEnd, incrementSize}]
(*ENDDO − LOOP*)(*ENDDO − LOOP*)(*ENDDO − LOOP*)

(* Plot graphs*)(* Plot graphs*)(* Plot graphs*)

xPoints = Table[T,{T, incrementSize, TEnd, incrementSize}];xPoints = Table[T,{T, incrementSize, TEnd, incrementSize}];xPoints = Table[T,{T, incrementSize, TEnd, incrementSize}];
muPoints = Table[{xPoints[[i]], muTilde[i]},{i, 1, Length[xPoints]}];muPoints = Table[{xPoints[[i]], muTilde[i]},{i, 1, Length[xPoints]}];muPoints = Table[{xPoints[[i]], muTilde[i]},{i, 1, Length[xPoints]}];
sigmaPoints = Table[{xPoints[[i]], sigmaTilde[i]},{i, 1, Length[xPoints]}];sigmaPoints = Table[{xPoints[[i]], sigmaTilde[i]},{i, 1, Length[xPoints]}];sigmaPoints = Table[{xPoints[[i]], sigmaTilde[i]},{i, 1, Length[xPoints]}];
ListLinePlot[muPoints, PlotRange→ Full, AxesLabel→ {Style[T, Large], Style[“mu”, Large]}]ListLinePlot[muPoints, PlotRange→ Full, AxesLabel→ {Style[T, Large], Style[“mu”, Large]}]ListLinePlot[muPoints, PlotRange→ Full, AxesLabel→ {Style[T, Large], Style[“mu”, Large]}]
ListLinePlot[sigmaPoints, PlotRange→ Full, AxesLabel→ {Style[T, Large], Style[“sigma”, Large]}]ListLinePlot[sigmaPoints, PlotRange→ Full, AxesLabel→ {Style[T, Large], Style[“sigma”, Large]}]ListLinePlot[sigmaPoints, PlotRange→ Full, AxesLabel→ {Style[T, Large], Style[“sigma”, Large]}]
muTilde[100] −muTilde[1]muTilde[100] −muTilde[1]muTilde[100] −muTilde[1]
sigmaTilde[100] − sigmaTilde[1]sigmaTilde[100] − sigmaTilde[1]sigmaTilde[100] − sigmaTilde[1]
0.000351263
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0.000486757

?muTilde?muTilde?muTilde

?sigmaTilde?sigmaTilde?sigmaTilde

Global̀muTilde

Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]
Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]
Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]
Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]
Print[“mu tilde = ” <> ToString[Log[moment1/S0]/1]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/1]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/1]]
Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/1]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/1]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/1]]]
First moment = 115.681
Second moment = 13392.7
Variance = 10.7393
SD = 3.27709
mu tilde = 0.0503521
sig tilde = 0.0283231

To evaluate the accuracy of our methods in pricing the VWAP option, we need more prices. If 100
prices are needed, then 200 (300) moments values are requires in lognormal (GIG) case. The GL 2nd
moment 100 rho0.nb notebook was coded in exactly the same manner as GL 2nd moment basic rho0.nb
except that the diffusion parameter σBM now become vectored-valued: σBM = 1 is partitioned into 100
interval. The moments were computed similarly as the last two notebook and the data was exported
for the next job.

The LNprice rho0.nb notebook computes option price via the lognormal approximation, first, import
the moments data.

csvFile=Import["F:\\Thesis codes\\FinalMoment\\GL 2nd moment 100_rho0.csv",
Transpose[{sig,m1,m2}],"CSV"];

sigmaPrice=Table[csvFile[[i]][[1]],{i,2,Length[csvFile]}];
mu1=Table[csvFile[[i]][[2]],{i,2,Length[csvFile]}];
mu2=Table[csvFile[[i]][[3]],{i,2,Length[csvFile]}];

here mu1 and mu2 are the first two moments of VWAP, using equations 5.5 and 5.6, µ̃ and σ̃ are solved
for each σBM from 0.01 to 1, i.e.

Clear[muTilde,sigmaTilde]

muTilde=Log[mu1/S0]/1
sigmaTilde=Sqrt[Log[((mu2-mu1ˆ2)+(mu1)ˆ2)/(mu1)ˆ2]/1]

{0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
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0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,0.0503521,
0.0503521,0.0503521,0.0503521,0.0503521}

{0. +0.0507952 I,0. +0.0497769 I,0. +0.0480316 I,0. +0.0454742 I,0. +0.0419607 I,
0. +0.0372157 I,0. +0.0306744 I,0. +0.0206977I,0.0123571,0.0283231,
0.0389921,0.0480339,0.0562396,0.0639327,0.0712799,0.0783792,0.0852932,0.0920643,0.0987224,
0.10529,0.111783,0.118214,0.124594,0.130931,0.137231,0.143501,0.149743,0.155962,0.162162,
0.168345,0.174513,0.180669,0.186814,0.19295,0.199079,0.205201,0.211318,0.217431,0.22354,
0.229648,0.235753,0.241858,0.247962,0.254067,0.260173,0.26628,0.272389,0.278501,0.284615,
0.290733,0.296854,0.30298,0.30911,0.315244,0.321384,0.327529,0.33368,0.339837,0.346,0.35217,
0.358346,0.36453,0.370721,0.376919,0.383126,0.38934,0.395563,0.401794,0.408034,0.414283,
0.420541,0.426809,0.433086,0.439373,0.44567,0.451977,0.458295,0.464623,0.470962,0.477313,
0.483674,0.490047,0.496431,0.502827,0.509235,0.515655,0.522088,0.528533,0.53499,0.541461,
0.547944,0.554441,0.560951,0.567475,0.574012,0.580563,0.587129,0.593708,0.600302,0.606911}

Note that the first eight roots of σ̃ are complex and so were taken out for the later integration. Now
using the lognormal distribution as the state price density, the prices could be computed by numerical
integration via NIntegrate.

f[x , µ ,σ ]:= 1√
2πσ2

Exp [− (x − Log[110] − (µ − 0.5 ∗ σ2)) ∧2/ (2 ∗ σ2)]
KStart=100;
KEnd=120;
LNPrices=Flatten[Table[Table[K,sigmaPrice[[i+8]],NIntegrate[(Exp[x]-K)
f[x,muTilde[[i+8]],sigmaTilde[[i+8]]],x,Log[K], ∞],
i,1,92,1],K,KStart,KEnd,2],1];

After the numerical integration, we obtain 100 prices for each strike (total: 100×20 prices.) The output
is too large to produce here (See CD) so we do not display. We plot the surface of the computed prices
to see how sensitive they are to different strike price and stock price volatilities.

ListPlot3D[LNPrices, AxesLabel -> K,σ,"Price",LabelStyle->Directive[Large]]

The output is identical to Fig.7.1a.
To check accuracy, MC counterpart prices are needed. We simulated 106 trajectories to ensure ac-

curacy with use of MATLAB. With the terminology introduced in the Monte Carlo Simulation chapter,
we first wrote a function to simulate path dependent VWAP call options:

% a realisation of a squared Ornstein-Uhblenbeck process
%vwapou.m
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T=1; %final time
N=500; %number of time steps
lambda=2;a=22;sig=5;%parameters
x=nan(N,1);%generate N by 1 not a Not-A-Number
x(1)=22;%initial value
h=T/(N-1); %step size
t=0:h:T; % time
f=@(z,x)(exp(-lambda*h)*x+sig*sqrt((1-exp(-2*h*lambda))/(2*lambda))*z);
for i=2:N

x(i)=f(randn,x(i-1));
end
x=x+a*(1-exp(-lambda*t’));
u=x.ˆ2;
subplot(2,1,1); plot(t,x)
subplot(2,1,2); plot(t,u)

%Simulate VWAP call with S_t dynamics is Gemetric Levy process
function [vwapcall,stdcall,vwapm1,stdm1,vwapm2,stdm2,vwapm3]
=vwap_rho_vg(S0,K,rho,sigvg,sigtil,nu,theta,lambda,a,sigou,X0,T,N,MSim)
tic; % use tic toc to elapsed CPU time
%initialisation
dt=T/N;
C=1/nu; % Assume C1=C2 for traceability
G=(sqrt(theta.ˆ2*nu.ˆ2/4+sigvg.ˆ2*nu/2)-theta*nu/2).ˆ(-1);
M=(sqrt(theta.ˆ2*nu.ˆ2/4+sigvg.ˆ2*nu/2)+theta*nu/2).ˆ(-1);
muX=a*(1-exp(-lambda*dt));
sigX2=(sigouˆ2/(2*lambda))*(1-exp(-2*lambda*dt));

mu_vg=0.1;
m=mu_vg+log(1-sigvg.ˆ2*nu/2-theta*nu)/nu-0.5*sigtil.ˆ2;
r=0;

sum1=0;
sum1a=0;
sum1b=0;
sum2=0;
sum3=0;
sum4=0;
%To generate stock path, we first generate jumps
for j=1:MSim

S_vg=S0;
Xti=X0;
Uti=X0.*X0;
SumUt=X0.*X0;
SumStUt=S_vg.*Uti;
for i=2:N+1
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%First, simulate jumps
g1=gamrnd(dt*C,1/M); % generate gamma random deviate
g2=gamrnd(dt*C,1/G); % generate gamma random variate
TJS=0;
JS=g1-g2;
TJS=TJS+JS;
%Now as usual, generate path for St
BM=randn(2,1); %generate two N(0,1) random variate
gz=sigtil.*sqrt(dt)*(rho*BM(1)+sqrt(1-rhoˆ2)*BM(2));
S_vg= S_vg.*exp(m*dt+gz+TJS);
%generate path for Volume
Xti=exp(-lambda*dt)*Xti+muX+sqrt(sigX2)*BM(1);
Uti=Xti.ˆ2;
StUt=S_vg.*Uti;
% Accumulate values of denominator and numerator of the VWAP
SumUt=SumUt+Uti;
SumStUt=SumStUt+StUt;
end;
%Take the ratio we get VWAP
AT=SumStUt/SumUt;
sum1=sum1+AT;
%add to running sum
sum1a=sum1a+max(AT-K,0);
sum2=sum2+AT.ˆ2;
sum3=sum3+AT.ˆ3;
sum4=sum4+AT.ˆ4;
end;
%discount back is not needed since r=0

%MC estimate of VWAP call
vwapcall=sum1a/MSim
stdcall=sqrt((sum1b/MSim-vwapcall.ˆ2)/MSim) %stderror of vwap call
%MC estimate of VWAP moment1
vwapm1=sum1/MSim
stdm1=sqrt((sum2/MSim-vwapm1.ˆ2)/MSim) %stderror of moment1
%MC estimate of VWAP moment1
vwapm2=sum2/MSim
stdm2=sqrt((sum4/MSim-vwapm2.ˆ2)/MSim) %stderror of moment2
vwapm3=sum3/MSim

toc
%Elapsed time is 46897.359567 seconds
%vwap_rho_vg(110,100,0.2,0.1,vol,0.1,-0.14,2,22,5,22,1,500,10)
%vwap_rho_vg(110,K,0.2,0.1,vol,0.1,-0.14,2,22,5,22,1,500,10) %for surface plot

One great advantage of MATLAB is the capability of handling vectors and matrices, vectored valued
can be used directly. Hence, to compute the 100 prices at each strike, we set σ = [0.01 ∶ 0.01 ∶ 1],
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K = [100 ∶ 1 ∶ 120]. then with use of the f function, the previous mentioned vwap rho vg function was
implemented in obtained the desired quantities of interest. Nevertheless, the codes are the following.

% MC option prices surface plot code
T=1;r=0;
K=[100:1:120];
S0=110;
vol=[0.01:0.01:1];
[X,Y]=meshgrid(K,vol);
f=@(K,vol) vwap_rho_vg(110,K,0.5,0.1,vol,0.1,-0.14,2,22,5,22,1,500,1000000)
[call,sdc,m1,sd1,m2,sd2,m3]=f(X,Y); %stored all
%xlswrite(’VWAP_GL_MC_rho0.xls’,[call,sdc,m1,sd1,m2,sd2,m3]) %output data to excel

One can also plot the surface via the surf() function to visualise how prices varies across volatilities
and strikes. The output was presented previously as in Fig.7.2.

Now we check the accuracy of the lognormal approximation at three level of strike prices K =
100, 110, 120. First, import the Monte Carlo option prices and store them in a table

mcPriceKcsv=Import["F:\\Thesis codes\\FinalMoment\\VWAP_GL_MC_rho0.csv","CSV"];
Table[mcPriceKcsv[[i]][[1]],{i,1,Length[mcPriceKcsv]}];
mcCallK100=Table[mcPriceKcsv[[i]][[2]],{i,9,Length[mcPriceKcsv]}];
mcCallK110=Table[mcPriceKcsv[[i]][[12]],{i,9,Length[mcPriceKcsv]}];
mcCallK120=Table[mcPriceKcsv[[i]][[22]],{i,9,Length[mcPriceKcsv]}];

Copy the previous computed analytical prices data at the desired strike level, store them in a table as
well.

LNCallK100 = Table[LNPriceK100[[i]][[3]], {i, 1, Length[LNPriceK100], 1}]
(*Table of call price struck at 100 i from 1 to 100 in step of 1*)

LNCallK110 = Table[LNPriceK110[[i]][[3]], {i, 1, Length[LNPriceK110], 1}]
(*Table of call price struck at 100 i from 1 to 100 in step of 1*)

LNCallK120 = Table[LNPriceK120[[i]][[3]], {i, 1, Length[LNPriceK120], 1}]
(*Table of call price struck at 120 i from 1 to 100 in step of 1*)

Compute the relative error, and plot them.

relativeK100
=Table[{LNPriceK100[[i]][[2]],Abs[mcCallK100[[i]]-LNCallK100[[i]]]/mcCallK100[[i]]*100},
{i,1,92,1}]

ListLinePlot[relativeK100,PlotStyle->{Thick},AxesLabel->{\[Sigma],Text["Relative Error (%)"]},
PlotRange->{{0.09,1}}]

relativeK110
=Table[{LNPriceK110[[i]][[2]],Abs[mcCallK110[[i]]-LNCallK110[[i]]]/mcCallK110[[i]]*100},
{i,1,92,1}]

ListLinePlot[relativeK110,PlotStyle->{Thick},AxesLabel->{\[Sigma],Text["Relative Error (%)"]},
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PlotRange->{{0.09,1}}]

relativeK120
=Table[{LNPriceK120[[i]][[2]],Abs[mcCallK120[[i]]-LNCallK120[[i]]]/mcCallK120[[i]]*100},
{i,1,92 ,1}]

ListLinePlot[relativeK120,PlotStyle->{Thick},AxesLabel->{\[Sigma],Text["Relative Error (%)"]},
PlotRange->{{0.09,1}}]

Now to compute the GIG prices, open the GIGprice rho0.nb, import the moments data as usual,

csvFile=Import["F:\\Thesis codes\\FinalMoment\\NEW\\GL 2nd moment 100_rho0.csv","CSV"];

sigmaPrice=Table[csvFile[[i]][[1]], {i,2,Length[csvFile]}];
mu1=Table[csvFile[[i]][[2]], {i,2,Length[csvFile]}];
mu2=Table[csvFile[[i]][[3]], {i,2,Length[csvFile]}];
mu3=Table[csvFile[[i]][[4]], {i,2,Length[csvFile]}];
R1[p_,u_]:=(BesselK[p+2,u]BesselK[p,u])/BesselK[p+1,u]
R2[p_,u_]:=(BesselK[p+3,u](BesselK[p,u])ˆ2)/(BesselK[p+1,u])ˆ3

Use the FindRoot command to find p and u, Notice that BesselK[p, u] implemented in Mathe-
matica gives us the modified Bessel function of the second kind Kp(u), here p is the order of the Bessel
function evaluated at point u

puRoots = Table[FindRoot[{R1[p,u]==mu2[[i]]/(mu1[[i]])ˆ2,R2[p,u]==mu3[[i]]/(mu1[[i]])ˆ3},
{{p,-1.5},{u,0.5}}], {i,1,Length[mu1],1}]

And the following is obtained.

FindRoot::lstol: The line search decreased the step size to within tolerance specified
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease
in the merit function.
You may need more than MachinePrecision digits of working precision to meet

these tolerances. >>

{{p->-213.252,u->139.272},{p->-207.933,u->135.755},{p->-199.615,u->130.253},
{p->-189.023,u->123.249},{p->-176.952,u->115.267},{p->-164.149,u->106.804},
{p->-151.231,u->98.2653},{p->-138.657,u->89.9567},{p->-126.735,u->82.0804},
{p->-115.642,u->74.7546},{p->-105.46,u->68.0333},{p->-96.2052,u->61.9255},
{p->-87.8465,u->56.4117},{p->-80.3293,u->51.4553},{p->-73.5858,u->47.0111},
{p->-67.5434,u->43.0311},{p->-62.1304,u->39.4676},{p->-57.2787,u->36.2756},
{p->-52.9257,u->33.4134},{p->-49.0143,u->30.8433},{p->-45.4939,u->28.5317},
{p->-42.3193,u->26.4487},{p->-39.4507,u->24.568},{p->-36.8534,u->22.8664},
{p->-34.4964,u->21.3236},{p->-32.3532,u->19.9219},{p->-30.4,u->18.6457},
{p->-28.6163,u->17.4813},{p->-26.9839,u->16.4168},{p->-25.4871,u->15.4416},
{p->-24.1118,u->14.5465},{p->-22.8458,u->13.7234},{p->-21.6781,u->12.965},
{p->-20.5992,u->12.2652},{p->-19.6005,u->11.6181},{p->-18.6746,u->11.0189},
{p->-17.8147,u->10.4631},{p->-17.0148,u->9.94674},{p->-16.2696,u->9.46632},
{p->-15.5743,u->9.01867},{p->-14.9246,u->8.60099},{p->-14.3168,u->8.21072},
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{p->-13.7473,u->7.84559},{p->-13.213,u->7.50355},{p->-12.7112,u->7.18274},
{p->-12.2392,u->6.88149},{p->-11.7948,u->6.59828},{p->-11.3759,u->6.33174},
{p->-10.9805,u->6.08061},{p->-10.6071,u->5.84375},{p->-10.2539,u->5.62013},
{p->-9.91953,u->5.4088},{p->-9.60271,u->5.2089},{p->-9.30221,u->5.01963},
{p->-9.01692,u->4.84027},{p->-8.74584,u->4.67014},{p->-8.48802,u->4.50865},
{p->-8.24261,u->4.35522},{p->-8.00883,u->4.20933},{p->-7.78593,u->4.07051},
{p->-7.57324,u->3.93831},{p->-7.37014,u->3.81233},{p->-7.17604,u->3.69218},
{p->-6.99042,u->3.57752},{p->-6.81278,u->3.46801},{p->-6.64265,u->3.36336},
{p->-6.4796,u->3.26328},{p->-6.32323,u->3.16752},{p->-6.17317,u->3.07583},
{p->-6.02906,u->2.98798},{p->-5.8906,u->2.90376},{p->-5.75746,u->2.82297},
{p->-5.62937,u->2.74543},{p->-5.50606,u->2.67097},{p->-5.38729,u->2.59942},
{p->-5.27281,u->2.53064},{p->-5.1624,u->2.46447},{p->-5.05587,u->2.40079},
{p->-4.95302,u->2.33948},{p->-4.85366,u->2.2804},{p->-4.75763,u->2.22347},
{p->-4.66476,u->2.16856},{p->-4.5749,u->2.11558},{p->-4.48791,u->2.06444},
{p->-4.40365,u->2.01505},{p->-4.32199,u->1.96734},{p->-4.24281,u->1.92122},
{p->-4.16599,u->1.87661},{p->-4.09144,u->1.83346},{p->-4.01904,u->1.7917},
{p->-3.94869,u->1.75126},{p->-3.88031,u->1.71209},{p->-3.81381,u->1.67413},
{p->-3.7491,u->1.63733},{p->-3.6861,u->1.60164},{p->-3.62474,u->1.56701},
{p->-3.56494,u->1.5334},{p->-3.50665,u->1.50077},{p->-3.44978,u->1.46907},
{p->-3.39428,u->1.43828}}

Extract p and u from the list so that we can use them conveniently.

pRoots = Table[puRoots[[i]][[1]][[2]],{i,1,Length[puRoots],1}]
uRoots = Table[puRoots[[i]][[2]][[2]],{i,1,Length[puRoots],1}]

{-213.252,-207.933,-199.615,-189.023,-176.952,-164.149,-151.231,-138.657,-126.735,-115.642,
-105.46,-96.2052,-87.8465,-80.3293,-73.5858,-67.5434,-62.1304,-57.2787,-52.9257,-49.0143,
-45.4939,-42.3193,-39.4507,-36.8534,-34.4964,-32.3532,-30.4,-28.6163,-26.9839,-25.4871,
-24.1118,-22.8458,-21.6781,-20.5992,-19.6005,-18.6746,-17.8147,-17.0148,-16.2696,-15.5743,
-14.9246,-14.3168,-13.7473,-13.213,-12.7112,-12.2392,-11.7948,-11.3759,-10.9805,-10.6071,
-10.2539,-9.91953,-9.60271,-9.30221,-9.01692,-8.74584,-8.48802,-8.24261,-8.00883,-7.78593,
-7.57324,-7.37014,-7.17604,-6.99042,-6.81278,-6.64265,-6.4796,-6.32323,-6.17317,-6.02906,
-5.8906,-5.75746,-5.62937,-5.50606,-5.38729,-5.27281,-5.1624,-5.05587,-4.95302,-4.85366,
-4.75763,-4.66476,-4.5749,-4.48791,-4.40365,-4.32199,-4.24281,-4.16599,-4.09144,-4.01904,
-3.94869,-3.88031,-3.81381,-3.7491,-3.6861,-3.62474,-3.56494,-3.50665,-3.44978,-3.39428}

{139.272,135.755,130.253,123.249,115.267,106.804,98.2653,89.9567,82.0804,74.7546,68.0333,
61.9255,56.4117,51.4553,47.0111,43.0311,39.4676,36.2756,33.4134,30.8433,28.5317,26.4487,
24.568,22.8664,21.3236,19.9219,18.6457,17.4813,16.4168,15.4416,14.5465,13.7234,12.965,
12.2652,11.6181,11.0189,10.4631,9.94674,9.46632,9.01867,8.60099,8.21072,7.84559,7.50355,
7.18274,6.88149,6.59828,6.33174,6.08061,5.84375,5.62013,5.4088,5.2089,5.01963,4.84027,
4.67014,4.50865,4.35522,4.20933,4.07051,3.93831,3.81233,3.69218,3.57752,3.46801,3.36336,
3.26328,3.16752,3.07583,2.98798,2.90376,2.82297,2.74543,2.67097,2.59942,2.53064,2.46447,
2.40079,2.33948,2.2804,2.22347,2.16856,2.11558,2.06444,2.01505,1.96734,1.92122,1.87661,
1.83346,1.7917,1.75126,1.71209,1.67413,1.63733,1.60164,1.56701,1.5334,1.50077,1.46907,
1.43828}
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Now use the p, u roots as inputs to find a, b roots via the FindRoot command.

abRoots=Table[FindRoot[{(b/a)ˆ(1/2) BesselK[pRoots[[i]]+1,uRoots[[i]]]/BesselK[pRoots[[i]],
uRoots[[i]]]==mu1[[i]],
Sqrt[a b]==uRoots[[i]]},{{a,0.2},{b,20.2}}], {i,1,Length[puRoots],1}]

{{22->0.359611,0->53938.1},{22->0.350466,0->52585.3},{22->0.336163,0->50469.4},
{22->0.317953,0->47775.},{22->0.297208,0->44704.6},{22->0.275211,0->41448.2},
{22->0.253025,0->38162.5},{22->0.23144,0->34964.6},{22->0.210983,0->31932.3},
{22->0.191962,0->29111.3},{22->0.174515,0->26522.3},{22->0.158666,0->24168.9},
{22->0.144363,0->22043.5},{22->0.131512,0->20132.4},{22->0.119994,0->18418.},
{22->0.109683,0->16882.},{22->0.100456,0->15506.2},{22->0.0921958,0->14273.1},
{22->0.0847927,0->13166.9},{22->0.0781492,0->12173.},{22->0.0721776,0->11278.5},
{22->0.0668,0->10472.1},{22->0.061948,0->9743.45},{22->0.0575612,0->9083.77},
{22->0.0535868,0->8485.26},{22->0.0499786,0->7941.07},{22->0.0466961,0->7445.21},
{22->0.0437036,0->6992.46},{22->0.0409702,0->6578.19},{22->0.0384684,0->6198.37},
{22->0.0361743,0->5849.46},{22->0.0340666,0->5528.3},{22->0.0321267,0->5232.16},
{22->0.0303382,0->4958.58},{22->0.0286863,0->4705.4},{22->0.0271582,0->4470.7},
{22->0.0257423,0->4252.77},{22->0.0244284,0->4050.1},{22->0.0232073,0->3861.33},
{22->0.0220709,0->3685.24},{22->0.0210117,0->3520.74},{22->0.0200233,0->3366.87},
{22->0.0190997,0->3222.73},{22->0.0182356,0->3087.54},{22->0.0174262,0->2960.59},
{22->0.0166671,0->2841.22},{22->0.0159544,0->2728.85},{22->0.0152846,0->2622.96},
{22->0.0146544,0->2523.05},{22->0.0140608,0->2428.7},{22->0.0135012,0->2339.49},
{22->0.0129731,0->2255.06},{22->0.0124743,0->2175.09},{22->0.0120027,0->2099.25},
{22->0.0115565,0->2027.28},{22->0.0111339,0->1958.91},{22->0.0107333,0->1893.9},
{22->0.0103534,0->1832.05},{22->0.00999269,0->1773.14},{22->0.00965002,0->1717.},
{22->0.00932423,0->1663.44},{22->0.00901425,0->1612.32},{22->0.00871913,0->1563.48},
{22->0.00843795,0->1516.79},{22->0.00816988,0->1472.13},{22->0.00791413,0->1429.36},
{22->0.00767,0->1388.4},{22->0.0074368,0->1349.13},{22->0.0072139,0->1311.45},
{22->0.00700074,0->1275.29},{22->0.00679677,0->1240.56},{22->0.00660147,0->1207.18},
{22->0.00641438,0->1175.08},{22->0.00623505,0->1144.19},{22->0.00606308,0->1114.45},
{22->0.00589807,0->1085.8},{22->0.00573966,0->1058.19},{22->0.00558751,0->1031.55},
{22->0.00544131,0->1005.85},{22->0.00530075,0->981.039},{22->0.00516556,0->957.068},
{22->0.00503547,0->933.901},{22->0.00491024,0->911.497},{22->0.00478962,0->889.821},
{22->0.00467341,0->868.839},{22->0.00456139,0->848.517},{22->0.00445337,0->828.827},
{22->0.00434916,0->809.737},{22->0.0042486,0->791.222},{22->0.00415153,0->773.255},
{22->0.00405778,0->755.812},{22->0.00396721,0->738.869},{22->0.00387969,0->722.404},
{22->0.00379509,0->706.397},{22->0.00371329,0->690.828},{22->0.00363416,0->675.677},
{22->0.00355761,0->660.926},{22->0.00348352,0->646.559},{22->0.00341181,0->632.559},
{22->0.00334238,0->618.911}}

Extract a, b roots from the list so that we can make use of them

aRoots = Table[abRoots[[i]][[1]][[2]],{i,1,Length[puRoots],1}]
bRoots = Table[abRoots[[i]][[2]][[2]],{i,1,Length[puRoots],1}]

{0.359611,0.350466,0.336163,0.317953,0.297208,0.275211,0.253025,0.23144,0.210983,
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0.191962,0.174515,0.158666,0.144363,0.131512,0.119994,0.109683,0.100456,0.0921958,
0.0847927,0.0781492,0.0721776,0.0668,0.061948,0.0575612,0.0535868,0.0499786,0.0466961,
0.0437036,0.0409702,0.0384684,0.0361743,0.0340666,0.0321267,0.0303382,0.0286863,0.0271582,
0.0257423,0.0244284,0.0232073,0.0220709,0.0210117,0.0200233,0.0190997,0.0182356,0.0174262,
0.0166671,0.0159544,0.0152846,0.0146544,0.0140608,0.0135012,0.0129731,0.0124743,0.0120027,
0.0115565,0.0111339,0.0107333,0.0103534,0.00999269,0.00965002,0.00932423,0.00901425,
0.00871913,0.00843795,0.00816988,0.00791413,0.00767,0.0074368,0.0072139,0.00700074,
0.00679677,0.00660147,0.00641438,0.00623505,0.00606308,0.00589807,0.00573966,0.00558751,
0.00544131,0.00530075,0.00516556,0.00503547,0.00491024,0.00478962,0.00467341,0.00456139,
0.00445337,0.00434916,0.0042486,0.00415153,0.00405778,0.00396721,0.00387969,0.00379509,
0.00371329,0.00363416,0.00355761,0.00348352,0.00341181,0.00334238}

{53938.1,52585.3,50469.4,47775.,44704.6,41448.2,38162.5,34964.6,31932.3,29111.3,
26522.3,24168.9,22043.5,20132.4,18418.,16882.,15506.2,14273.1,13166.9,12173.,
11278.5,10472.1,9743.45,9083.77,8485.26,7941.07,7445.21,6992.46,6578.19,6198.37,
5849.46,5528.3,5232.16,4958.58,4705.4,4470.7,4252.77,4050.1,3861.33,3685.24,
3520.74,3366.87,3222.73,3087.54,2960.59,2841.22,2728.85,2622.96,2523.05,2428.7,
2339.49,2255.06,2175.09,2099.25,2027.28,1958.91,1893.9,1832.05,1773.14,1717.,
1663.44,1612.32,1563.48,1516.79,1472.13,1429.36,1388.4,1349.13,1311.45,1275.29,1240.56,
1207.18,1175.08,1144.19,1114.45,1085.8,1058.19,1031.55,1005.85,981.039,957.068,
933.901,911.497,889.821,868.839,848.517,828.827,809.737,791.222,773.255,755.812,
738.869,722.404,706.397,690.828,675.677,660.926,646.559,632.559,618.911}

All roots are real. Now using the GIG distribution as the state price density, the prices could be
computed by numerical integration via NIntegrate.

f[x , p , a , b ]:= (a/b)p/2
2BesselK[p,

√
ab]x(p−1)Exp [− (ax + b

x
)/2]f[x , p , a , b ]:= (a/b)p/2

2BesselK[p,
√

ab]x(p−1)Exp [− (ax + b
x
)/2]f[x , p , a , b ]:= (a/b)p/2

2BesselK[p,
√

ab]x(p−1)Exp [− (ax + b
x
)/2]

KStart = 100;KStart = 100;KStart = 100;
KEnd = 120;KEnd = 120;KEnd = 120;

GIGPrices=
Flatten[Table[Table[Strike, sigmaPrice[[i]],
NIntegrate[(x-Strike)f[x,pRoots[[i]],aRoots[[i]],bRoots[[i]]],
x,Strike, ∞],
i,1,Length[puRoots],1],
Strike,KStart,KEnd,2] ,1]

Again, output too large so not produce here (See CD).
Plot the surface to see how price evolves across different strike levels and volatilities.

ListPlot3D[GIGPrices, AxesLabel -> K,σ," Price",LabelStyle->Directive[Large]]

The output is identical to Fig.7.1b. To check accuracy, the exact procedure was followed as in the
LNprice rho0.nb. (See CD)
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Appendix C

All other MATLAB and
Mathematica codes

C.1 MATLAB codes for the plots of trajectories and GBM
model

1. MATLAB codes for chapter 4

%10 trajectories of GL with VG jumps are plotted with use of Euler scheme
clear all;
increment = 500; %500 discretisation
ntraj = 10;
T = 1; % Maturity
S0 = 110; % Initial stock price
%Model parameter
sigmaBM = 0.10; % volatility
sigmaVG=0.3;
theta= -0.14;
nu=0.2;
mu_vg=0.1;
m=mu_vg+log(1-sigmaVGˆ2*nu/2-theta*nu)/nu-0.5*sigmaBMˆ2;
C=1/nu;
G=(sqrt(thetaˆ2*nuˆ2/4+sigmaVGˆ2*nu/2)-theta*nu/2)ˆ(-1);
M=(sqrt(thetaˆ2*nuˆ2/4+sigmaVGˆ2*nu/2)+theta*nu/2)ˆ(-1);
dt = T/increment; % time step
c1=m*dt;
c2=sigmaBM*sqrt(dt);

T=1;

for i = 1:increment+1
t(i) = (i-1)*dt;

end
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for i = 1 : ntraj
% initialize stock price for each simulation
S(1,i) = S0;

for j = 2:increment+1
variate = normrnd(0,1); % generate gaussian random deviate
g1=gamrnd(dt*C,1/M); % generate gamma random deviate
g2=gamrnd(dt*C,1/G) ;% generate gamma random deviate
TJS = 0;
JS = g1-g2;
TJS = TJS + JS;
S(j,i) = S(j-1,i)*exp( c1 +c2*deviate+ TJS );

end
end

plot(t,S)

%10 trajectories of GBM are plotted with use of Euler scheme
clear all;
increment = 500; %500 discretisation
ntraj = 10; %number of trajectories
T = 1; % Maturity
S0 = 110; % Initial stock price
sigma = 0.10; % volatility
mu=0.1
dt = T/increment; % time step
c1=(mu-0.5*sigmaˆ2)*dt
c2=sigma*sqrt(dt);
T=1;
for i = 1:increment+1

t(i) = (i-1)*dt;
end
for i = 1 : ntraj

% initialize stock price for each simulation
S(1,i) = S0;

for j = 2:increment+1
deviate = normrnd(0,1);
S(j,i) = S(j-1,i)*exp( c1 +c2*deviate );

end
end

plot(t,S)

% one trajectory of a squared Ornstein-Uhblenbeck process
%vwapou.m
T=1; %final time
N=500; %number of time steps
lambda=2;a=22;sig=5;%parameters
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x=nan(N,1);%generate N by 1 not a Not-A-Number
x(1)=22;%initial value
h=T/(N-1); %step size
t=0:h:T; % time
f=@(z,x)(exp(-lambda*h)*x+sig*sqrt((1-exp(-2*h*lambda))/(2*lambda))*z);
for i=2:N

x(i)=f(randn,x(i-1));
end
x=x+a*(1-exp(-lambda*t’));
u=x.ˆ2;
subplot(2,1,1); plot(t,x)
subplot(2,1,2); plot(t,u)

%Simulate VWAP call with S_t dynamics is Gemetric Brownian motion process
function [vwapcall,stdcall,vwapm1,stdm1,vwapm2,stdm2,vwapm3]
= vwap_rho_gbm( S0,K,rho,mu,sigma,lambda,a,sigou,X0,T,N,MSim )
tic;
dt=T/N;
muX=a*(1-exp(-lambda*dt));
sigX2=(sigouˆ2/(2*lambda))*(1-exp(-2*lambda*dt));
r=0;

%initialisation
sum1=0;
sum1a=0;
sum1b=0;
sum2=0;
sum3=0;
sum4=0;
for j=1:MSim
S_gbm=S0;
Xti=X0;
Uti=0;
SumUt=X0.*X0;
SumStUt=S_gbm.*Uti;
for i=2:N+1

BM=randn(2,1);
S_gbm=S_gbm.*exp((mu-0.5*sigma.ˆ2)*dt
+sigma*sqrt(dt).*(rho*BM(1)+sqrt(1-rhoˆ2)*BM(2)));
Xti=exp(-lambda*dt)*Xti+muX+sqrt(sigX2)*BM(1);
Uti=Xti.ˆ2;
StUt=S_gbm.*Uti;
SumUt=SumUt+Uti;
SumStUt=SumStUt+StUt;
end;
AT=SumStUt/SumUt;
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sum1=sum1+AT;
sum1a=sum1a+max(AT-K,0);
sum1b=sum1b+max(AT-K,0).ˆ2;

sum2=sum2+AT.ˆ2;
sum3=sum3+AT.ˆ3;
sum4=sum4+AT.ˆ4;
end;
%discount back is not needed since r=0

vwapcall=sum1a/MSim
stdcall=sqrt((sum1b/MSim-vwapcall.ˆ2)/MSim)
vwapm1=sum1/MSim
stdm1=sqrt((sum2/MSim-vwapm1.ˆ2)/MSim)
vwapm2=sum2/MSim
stdm2=sqrt((sum4/MSim-vwapm2.ˆ2)/MSim)
vwapm3=sum3/MSim

toc
%Elapsed time is 288835.439527 seconds
%[call,sdc,m1,sd1,m2,sd2,m3]=vwap_rho_gbm( 110,100,0.1,0.1,0.1,2,22,5,22,1,500,1000)
%[call,sdc,m1,sd1,m2,sd2,m3]=vwap_rho_gbm( 110,K,0.1,0.1,vol,2,22,5,22,1,500,1000)%for surface plot

C.2 Analytical approximation under the GBM model
The following are the analogous Mathematica codes implement our analytical formulae under the clas-
sical GBM model. Notebook GBM 2nd moment basic rho0.nb compute first and second moments given
scalar parameter values

%S0=110; σ=5; T=1; λ=2; b=0; ρ=0; σVG=0.1; σBM=0.1; σRHO=σBM*
√

1 − ρˆ2;

m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;

Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]
PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,

{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

−( (σ11−σ132
σ33 )(y−µx2− (z−µx3)σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))
−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)

G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];
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F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];
A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;
B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;
Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];
Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];
JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )

4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;

HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;

constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;

L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];
Check that the coefficient H, J, L are correct

FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]

0

Check that the coefficient A, B, C, D, F are correct

FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]
0

OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;

Now the outer integral

*)*)*)

PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];
expon1[x , y ] = 1

2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))

+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;

G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];
F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];
A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;
B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;
Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];
Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];
(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)

FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]
0

OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;
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(*Now need to collect coefficients for the triple integral*)

exponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))
+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;

C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];
Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;
Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;
Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;
Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];
Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];
Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];
Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];
Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];
Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];
FullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ v

+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]
0

κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;

J = JYt;J = JYt;J = JYt;

H = HYt2;H = HYt2;H = HYt2;

c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)

c2 = −zσ2 +H;c2 = −zσ2 +H;c2 = −zσ2 +H;

c3 = −2qσ;c3 = −2qσ;c3 = −2qσ;

gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;
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(*Now to compute all the covariance*)

σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;

σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;

σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;

σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;

σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;

σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;

σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;

(*σ11 and σbb were precomputed*)

σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;

σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;

σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;

σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)

σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;

Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];
ψ[n ]:= (n ∗ g + 1

2 n∧2σBM∧2)ψ[n ]:= (n ∗ g + 1
2 n∧2σBM∧2)ψ[n ]:= (n ∗ g + 1
2 n∧2σBM∧2)

cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]

S0 = 110;S0 = 110;S0 = 110;

σ = 5;σ = 5;σ = 5;

T = 1;T = 1;T = 1;

λ = 2;λ = 2;λ = 2;

b = 0;b = 0;b = 0;

a = 22;a = 22;a = 22;

ρ = 0;ρ = 0;ρ = 0;σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)σBM = 0.1; (*this is the diffusion coefficient in the vg stock price model*)

σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;

µ = 0.1;µ = 0.1;µ = 0.1;

g = µ − 0.5 ∗ σBM∧2;g = µ − 0.5 ∗ σBM∧2;g = µ − 0.5 ∗ σBM∧2;

µx1 = 0;µx1 = 0;µx1 = 0;

µx2 = 0;µx2 = 0;µx2 = 0;

µx3 = 0;µx3 = 0;µx3 = 0;

µa = 0;µa = 0;µa = 0;

µb = 0;µb = 0;µb = 0;
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(*ψ[1]; *)(*ψ[1]; *)(*ψ[1]; *)

Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];

dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;

moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]
TimeUsed[]TimeUsed[]TimeUsed[]
115.681

13.353

OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/
(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2

Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/

(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;

gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2

−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2

+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)
−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2

−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/
(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;
Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T

0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];

dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);
moment2 =moment2 =moment2 =
NIntegrate [S02qExp[s ∗ ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],
{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+
NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],
{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];
TimeUsed[]TimeUsed[]TimeUsed[]
Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]
Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]
Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]
Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]
Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]
Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]
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30.342

First moment = 115.681
Second moment = 13427.9
Variance = 45.934
SD = 6.77746
mu tilde = 0.0503521
sig tilde = 0.0585376 It worth mentioning the above results exactly match the original work in Novikov
et al. Notice that moment 1 is invariant against the choice of correlation and pricing model. A simple
reason is that the terms in the characteristic exponent cancelled out.
The GBM 2nd moment 100 rho.nb was coded in exactly the same manner given parameter values

S0=110; σ=5; T=1; λ=2; b=0; ρ=0; σVG=0.1; σBM=0.01,0.02,...,1; σRHO=σBM*
√

1 − ρˆ2;

sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,

0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2,0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2,0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2,

0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31,0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31,0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31,

0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42,0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42,0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42,

0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53,0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53,0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53,

0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64,0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64,0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64,

0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75,0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75,0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75,

0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86,0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86,0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86,

0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97,0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97,0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97,

0.98, 0.99, 1};0.98, 0.99, 1};0.98, 0.99, 1};
m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;

Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]
PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,{{σ11 − (σ13)2

σ33 ,σ12 − σ13σ23
σ33 } ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,{{σ11 − (σ13)2

σ33 ,σ12 − σ13σ23
σ33 } ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,{{σ11 − (σ13)2

σ33 ,σ12 − σ13σ23
σ33 } ,

{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;
expon[x , y ] =expon[x , y ] =expon[x , y ] =
1
2 (−( (y−µx2− (z−µx3)σ23

σ33 )(−σ12+σ13σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )−1
2 (−( (y−µx2− (z−µx3)σ23

σ33 )(−σ12+σ13σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )−1
2 (−( (y−µx2− (z−µx3)σ23

σ33 )(−σ12+σ13σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )−
( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))( (σ11−σ132
σ33 )(y−µx2− (z−µx3)σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
+ (x−µx1− (z−µx3)σ13

σ33 )(−σ12+σ13σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

)(y − µx2 − (z−µx3)σ23
σ33 ))( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))
−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)

G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];
F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];
A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;
B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;
Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];
Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];
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JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;

HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;

constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;

L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];
Check that the coefficients H, J and L are correct

FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]

0

(*Check that the coefficients A,B,C,D,F and G are correct*)

FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]
0

OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;

(*Now the outer integral*)

*)*)*)

PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];
expon1[x , y ] = 1

2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))

+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;

G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];
F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];
A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;
B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;
Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];
Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];
FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)] ;FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)] ;FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)] ;
OC2 = FullSimplify [ 2π√

A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;

(*Now need to collect coefficients for the triple integral*)(*Now need to collect coefficients for the triple integral*)(*Now need to collect coefficients for the triple integral*)

exponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc
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+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))
+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;

C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];
Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;
Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;
Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;
Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];
Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];
Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];
Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];
Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];
Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];
FullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ v

+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]
0

κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;

J = JYt;J = JYt;J = JYt;

H = HYt2;H = HYt2;H = HYt2;

c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)

c2 = −zσ2 +H;c2 = −zσ2 +H;c2 = −zσ2 +H;

c3 = −2qσ;c3 = −2qσ;c3 = −2qσ;

gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;

(* Now to compute all the covariances*)(* Now to compute all the covariances*)(* Now to compute all the covariances*)

σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;

σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;

σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;

σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;

σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;

σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;

σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;
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(*σ11 and σbb were precomputed*)

σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;

σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;

(* We also need a few more covariances for second moment*)(* We also need a few more covariances for second moment*)(* We also need a few more covariances for second moment*)

σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;

σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)

σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;

Clear[S0, n, g,σBM, θ, v, µ];Clear[S0, n, g,σBM, θ, v, µ];Clear[S0, n, g,σBM, θ, v, µ];
ψ[n ]:= (n ∗ g + 1

2 n∧2σBM∧2)ψ[n ]:= (n ∗ g + 1
2 n∧2σBM∧2)ψ[n ]:= (n ∗ g + 1
2 n∧2σBM∧2)

cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]
(*Compute first moment*)(*Compute first moment*)(*Compute first moment*)

S0 = 110;S0 = 110;S0 = 110;

σ = 5;σ = 5;σ = 5;

T = 1;T = 1;T = 1;

λ = 2;λ = 2;λ = 2;

b = 0;b = 0;b = 0;

a = 22;a = 22;a = 22;

ρ = 0;ρ = 0;ρ = 0;

σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)

µ = 0.1;µ = 0.1;µ = 0.1;

g = µ − 0.5 ∗ σBM∧2;g = µ − 0.5 ∗ σBM∧2;g = µ − 0.5 ∗ σBM∧2;

µx1 = 0;µx1 = 0;µx1 = 0;

µx2 = 0;µx2 = 0;µx2 = 0;

µx3 = 0;µx3 = 0;µx3 = 0;

µa = 0;µa = 0;µa = 0;

µb = 0;µb = 0;µb = 0;

Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];

dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;

moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]
(*Nowtosetupthesecondmoment(*Nowtosetupthesecondmoment(*Nowtosetupthesecondmoment

*)*)*)
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OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/
(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2

Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/

(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;

gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2−gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2−gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2−
4Cu2CvCvwCw +Cuv2Cw2 + 4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)4Cu2CvCvwCw +Cuv2Cw2 + 4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)4Cu2CvCvwCw +Cuv2Cw2 + 4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)
−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2

−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/
(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;
Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T

0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];

dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);
moment2 = NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ ψ[1]moment2 = NIntegrate [S02qExp[s ∗ ψ[2] + (t − s) ∗ψ[1]moment2 = NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ψ[1]
+0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],{q, 0,∞},{t, 0, T},{s, 0, t}]+0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],{q, 0,∞},{t, 0, T},{s, 0, t}]+0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],{q, 0,∞},{t, 0, T},{s, 0, t}]
+NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1]+NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1]+NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1]
+0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],{q, 0,∞},{t, 0, T},{s, t, T}];+0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],{q, 0,∞},{t, 0, T},{s, t, T}];+0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],{q, 0,∞},{t, 0, T},{s, t, T}];
TimeUsed[]TimeUsed[]TimeUsed[]
Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]
Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]
Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]
Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]
Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]
Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]
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Analytical approximation in
response to the change of correlation

C.3 Analytical approximation under the Geometric Lévy model,
ρ = 0.3

sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22,0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22,0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22,

0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34,0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34,0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34,

0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,

0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58,0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58,0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58,

0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7,0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7,0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7,

0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82,0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82,0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82,

0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94,0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94,0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94,

0.95, 0.96, 0.97, 0.98, 0.99, 1};0.95, 0.96, 0.97, 0.98, 0.99, 1};0.95, 0.96, 0.97, 0.98, 0.99, 1};
m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;

Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]
PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)}PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)}PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)}

,{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;,{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;,{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

−( (σ11−σ132
σ33 )(y−µx2− (z−µx3)σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))
−2qσx + (κ−λ)y2

2 ;−2qσx + (κ−λ)y2

2 ;−2qσx + (κ−λ)y2

2 ;

G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];
F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];
A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;
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B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;
Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];
Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];
JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )

4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;

HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;

constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;

L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];

FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]

0

FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]
0

OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;

PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];
expon1[x , y ] = 1

2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))

+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;

G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];
F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];
A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;
B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;
Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];
Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];

FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]
0

OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;

exponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
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−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))
+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;

C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];
Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;
Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;
Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;
Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];
Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];
Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];
Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];
Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];
Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];
FullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ v

+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]
0

κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;

J = JYt;J = JYt;J = JYt;

H = HYt2;H = HYt2;H = HYt2;

c1 = −2zm[t]σ + J ;c1 = −2zm[t]σ + J ;c1 = −2zm[t]σ + J ;

c2 = −zσ2 +H;c2 = −zσ2 +H;c2 = −zσ2 +H;

c3 = −2qσ;c3 = −2qσ;c3 = −2qσ;

gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;

σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;

σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;

σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;

σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;
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σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;

σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;

σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;

σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;

σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;

σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;

σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)

σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;

Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];
ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:= (n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/v)

cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]

S0 = 110;S0 = 110;S0 = 110;

σ = 5;σ = 5;σ = 5;

T = 1;T = 1;T = 1;

λ = 2;λ = 2;λ = 2;

b = 0;b = 0;b = 0;

a = 22;a = 22;a = 22;

ρ = 0.3;ρ = 0.3;ρ = 0.3;

σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)

σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)

σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;

v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)

θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)

µ = 0.1;µ = 0.1;µ = 0.1;

g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;

µx1 = 0;µx1 = 0;µx1 = 0;

µx2 = 0;µx2 = 0;µx2 = 0;

µx3 = 0;µx3 = 0;µx3 = 0;

µa = 0;µa = 0;µa = 0;

µb = 0;µb = 0;µb = 0;
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(*ψ[1]; *)(*ψ[1]; *)(*ψ[1]; *)

Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];

dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;

Timing[moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]]Timing[moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]]Timing[moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]]
(*Nowtosetupthesecondmoment(*Nowtosetupthesecondmoment(*Nowtosetupthesecondmoment

*)*)*)

OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/
(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2

Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/

(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;

gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2−gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2−gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2−
4Cu2CvCvwCw +Cuv2Cw2 + 4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)4Cu2CvCvwCw +Cuv2Cw2 + 4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)4Cu2CvCvwCw +Cuv2Cw2 + 4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)
−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2

−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/
(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;
Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T

0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];

dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);
moment2 =moment2 =moment2 =
NIntegrate [S02qExp[s ∗ ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],
{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+
NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],
{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];
Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]
Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]
Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]
Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]
Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]
Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]
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C.4 Analytical approximation under the Geometric Lévy model,
ρ = 0.5

sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,sigmaPrices = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22,0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22,0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22,

0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34,0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34,0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34,

0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,

0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58,0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58,0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58,

0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7,0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7,0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7,

0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82,0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82,0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82,

0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94,0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94,0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94,

0.95, 0.96, 0.97, 0.98, 0.99, 1}0.95, 0.96, 0.97, 0.98, 0.99, 1}0.95, 0.96, 0.97, 0.98, 0.99, 1}
m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;m[t ] = ae−λt + a (1 − e−λt) ;

Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]Needs[“MultivariateStatistics̀”]
PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,PDF [MultinormalDistribution [{µx1 + σ13

σ33(z − µx3), µx2 + σ23
σ33(z − µx3)} ,

{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;{{σ11 − (σ13)2
σ33 ,σ12 − σ13σ23

σ33 } ,{σ12 − σ13σ23
σ33 ,σ22 − (σ23)2

σ33 }}] ,{x, y}] ;
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
expon[x , y ] = 1

2 (−( (y−µx2− (z−µx3)σ23
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )+ (x−µx1− (z−µx3)σ13
σ33 )(σ22−σ232

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(x − µx1 − (z−µx3)σ13

σ33 )
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

−( (σ11−σ132
σ33 )(y−µx2− (z−µx3)σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
−( (σ11−σ132

σ33 )(y−µx2− (z−µx3)σ23
σ33 )

−σ122+σ11σ22−σ132σ22
σ33 + 2σ12σ13σ23

σ33 −σ11σ232
σ33

+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))+ (x−µx1− (z−µx3)σ13
σ33 )(−σ12+σ13σ23

σ33 )
−σ122+σ11σ22−σ132σ22

σ33 + 2σ12σ13σ23
σ33 −σ11σ232

σ33
)(y − µx2 − (z−µx3)σ23

σ33 ))
−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)−2qσx + (κ−λ)y2

2 ; (*!!!!!!!!!!!!!!!!!!!!!!!!!!*)

G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];G = FullSimplify[expon[0, 0]];
F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];F = FullSimplify[Coefficient[expon[x, y], xy]];
A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;A = −FullSimplify [Coefficient [expon[x, 0], x2]] ;
B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;B = FullSimplify [Coefficient [expon[0, y], y2]] ;
Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];Cx = FullSimplify[Coefficient[expon[x, 0], x]];
Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];Dy = FullSimplify[Coefficient[expon[0, y], y]];
JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )

4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;JYt = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z]] ;

HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;HYt2 = FullSimplify [Coefficient [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G, z2]] ;

constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;constZ[z ] = B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G;

L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];L = FullSimplify[constZ[0]];
(*CheckthatthecoefficientsH, JandLarecorrect*)(*CheckthatthecoefficientsH, JandLarecorrect*)(*CheckthatthecoefficientsH, JandLarecorrect*)

FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]FullSimplify [B(Cx)2−Dy(ADy+CxF )
4∗(AB)+F 2 +G −HYt2 ∗ z2 − JYt ∗ z −L]
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0

(*CheckthatthecoefficientsA, B, C, D, FandGarecorrect*)(*CheckthatthecoefficientsA, B, C, D, FandGarecorrect*)(*CheckthatthecoefficientsA, B, C, D, FandGarecorrect*)

FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]FullSimplify [expon[x, y] − ((Cx ∗ x) + (Dy ∗ y) + (F ∗ (xy)) + (−A ∗ x2) + (B ∗ y2) +G)]
0

(*constantC∗inlatexdocument*)(*constantC∗inlatexdocument*)(*constantC∗inlatexdocument*)

OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;OC1 = FullSimplify [ 2π√
A
√− 4AB+F 2

A

/ (2π√−σ122 + σ11σ22 − σ132σ22
σ33 + 2σ12σ13σ23

σ33 − σ11σ232

σ33 )] ;

(*––––––––––––––––−(*––––––––––––––––−(*––––––––––––––––−
NowtheouterintegralNowtheouterintegralNowtheouterintegral

––––––––––––––––––––––––––––––––––––––––––

*)*)*)

PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];PDF[MultinormalDistribution[{µa, µb},{{σaa,σab},{σab,σbb}}],{x, y}];
expon1[x , y ] = 1

2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))expon1[x , y ] = 1
2 (−(y − µb)( (y−µb)σaa−σab2+σaaσbb − (x−µa)σab−σab2+σaaσbb) − (x − µa)(− (y−µb)σab−σab2+σaaσbb + (x−µa)σbb−σab2+σaaσbb))

+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;+(c1)x + (c2)x2 + (c3)y;

G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];G1 = FullSimplify[expon1[0, 0]];
F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];F1 = FullSimplify[Coefficient[expon1[x, y], xy]];
A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;A1 = −FullSimplify [Coefficient [expon1[x, 0], x2]] ;
B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;B1 = FullSimplify [Coefficient [expon1[0, y], y2]] ;
Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];Cx1 = FullSimplify[Coefficient[expon1[x, 0], x]];
Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];Dy1 = FullSimplify[Coefficient[expon1[0, y], y]];
(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)(*CheckthatthecoefficientsA1, B1, C1, D1, F1andG1arecorrect*)

FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]FullSimplify [expon1[x, y] − ((Cx1 ∗ x) + (Dy1 ∗ y) + (F1 ∗ (xy)) + (−A1 ∗ x2) + (B1 ∗ y2) +G1)]
0

OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;OC2 = FullSimplify [ 2π√
A1
√− 4A1B1+F12

A1

/ (2π√−σab2 + σaaσbb)] ;

(*Now need to collect coefficients for the triple integral*)(*Now need to collect coefficients for the triple integral*)(*Now need to collect coefficients for the triple integral*)

exponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσccexponTrip[u , v , w ] = 1
2 (−w ( w(−σab2+σaaσbb)

−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−v ( w(σabσac−σaaσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(−σac2+σaaσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)+ u(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc)
−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u ( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc−u( w(−σacσbb+σabσbc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc

+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc+ v(σacσbc−σabσcc)−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc
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+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))+ u(−σbc2+σbbσcc)
−σac2σbb+2σabσacσbc−σaaσbc2−σab2σcc+σaaσbbσcc))
+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;+(−2σm[t]z + J)u + (−zσ2 +H)u2 − 2qσv + (−2σ m[s]r)w + (−rσ2)w2;

C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];C00 = FullSimplify[exponTrip[0, 0, 0]];
Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;Cu2 = −Coefficient [exponTrip[u, 0, 0], u2] ;
Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;Cv2 = Coefficient [exponTrip[0, v, 0], v2] ;
Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;Cw2 = Coefficient [exponTrip[0, 0, w], w2] ;
Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];Cu = Coefficient[exponTrip[u, 0, 0], u];
Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];Cv = Coefficient[exponTrip[0, v, 0], v];
Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];Cw = Coefficient[exponTrip[0, 0, w], w];
Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];Cuv = Coefficient[exponTrip[u, v, 0], uv];
Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];Cuw = Coefficient[exponTrip[u, 0, w], uw];
Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];Cvw = Coefficient[exponTrip[0, v, w], vw];
FullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ vFullSimplify [exponTrip[u, v, w] − (−Cu2 ∗ u2 +Cv2 ∗ v2 +Cw2 ∗w2 +Cu ∗ u +Cv ∗ v

+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]+Cw ∗w +Cuv ∗ (u ∗ v) +Cuw ∗ (u ∗w) +Cvw ∗ (v ∗w) +C00)]
0

κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;κ =√λ2 + 2qσ2;

J = JYt;J = JYt;J = JYt;

H = HYt2;H = HYt2;H = HYt2;

c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)c1 = −2zm[t]σ + J ; (*!!!!!!!!!!!!!!!!!!!!!*)

c2 = −zσ2 +H;c2 = −zσ2 +H;c2 = −zσ2 +H;

c3 = −2qσ;c3 = −2qσ;c3 = −2qσ;

gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;gamma[z , q ] = OC1 ∗OC2 ∗Exp[L] ∗Exp [B1(Cx1)2−Dy1(A1Dy1+Cx1 F1)
4∗(A1B1)+F12 +G1] ;

(* Now to compute all the covariances*)(* Now to compute all the covariances*)(* Now to compute all the covariances*)

σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;σ22 = 1
2κ (1 − e−2κT ) ;

σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;σ33 = 1
2κ (1 − e−2κt) ;

σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;σ12 = ∫ T
t m[s] ( 1

2κe−κ(s+T ) (e2κs − 1))ds;

σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;σ13 = ∫ T
t m[s] ( 1

2κe−κ(s+t) (e2κt − 1))ds;

σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;σ23 = 1
2κ (eκ(t−T ) − e−κ(t+T )) ;

σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;σaa = 1
2κ (1 − e−2κt) ;

σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;σab = ∫ t
0 m[s] ( 1

2κe−κ(s+t) (e2κs − 1))ds;

(*σ11andσbbprecomputedincovariances.nb*)(*σ11andσbbprecomputedincovariances.nb*)(*σ11andσbbprecomputedincovariances.nb*)

σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;σ11 = −a2(2+e−2tκ−2e(t−T )κ+e−2T κ−2e−(t+T )κ+2tκ−2Tκ)
2κ3 ;
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σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;σbb = a2e−2tκ(−1+4etκ+e2tκ(−3+2tκ))
2κ3 ;

(* We also need a few more covariances for second moment*)(* We also need a few more covariances for second moment*)(* We also need a few more covariances for second moment*)

σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;σcc = 1
2κ (1 − e−2κs) ;

σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)σac = 1
2κe−κ(s+t) (e2κs − 1) ; (* s ≤ t*)

σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;σbc = −ae−(s+t)κ(−1+esκ)(1+esκ−2etκ)
2κ2 ;

Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];Clear[S0, n, g,σVG,σBM, θ, v, µ];
ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:=(n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/ v)ψ[n ]:= (n ∗ g + 1

2 n∧2σRHO∧2 − Log [1 − nθv + (nσVG)∧2v
2 ]/v)

cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]cf[n ]:=Exp[t ∗ψ[n]]
(*Compute first moment*)(*Compute first moment*)(*Compute first moment*)

S0 = 110;S0 = 110;S0 = 110;

σ = 5;σ = 5;σ = 5;

T = 1;T = 1;T = 1;

λ = 2;λ = 2;λ = 2;

b = 0;b = 0;b = 0;

a = 22;a = 22;a = 22;

ρ = 0.5;ρ = 0.5;ρ = 0.5;

σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)σVG = 0.1; (*control parameter for skewness*)

σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)σBM = sigmaPrices; (*this is the diffusion coefficient in the vg stock price model*)

σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;σRHO = σBM ∗ (√1 − ρ∧2) ;

v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)v = 0.1; (*control parameter for kurtosis*)

θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)θ = −0.14; (*measure of symmetry*)

µ = 0.1;µ = 0.1;µ = 0.1;

g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;g = µ − 0.5 ∗ σBM∧2 + Log [1 − θv + (σVG)∧2v
2 ]/ v;

µx1 = 0;µx1 = 0;µx1 = 0;

µx2 = 0;µx2 = 0;µx2 = 0;

µx3 = 0;µx3 = 0;µx3 = 0;

µa = 0;µa = 0;µa = 0;

µb = 0;µb = 0;µb = 0;

(*ψ[1]; *)(*ψ[1]; *)(*ψ[1]; *)

Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];Phi[z , q ] = Exp [−z(m[t])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 − z ∗ b − q ∗ b ∗ T ] ∗ gamma[z, q];

dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;dzPhi[q , t ] = Derivative[1, 0][Phi][z, q]/.z → 0;

Timing[moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]]Timing[moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]]Timing[moment1 = NIntegrate[−S0 ∗ cf[1]Exp[0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ t]dzPhi[q, t],{q, 0,∞},{t, 0, T}]]
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(*Nowtosetupthesecondmoment(*Nowtosetupthesecondmoment(*Nowtosetupthesecondmoment

*)*)*)

OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/OC2trip = 1√
Cu2

√−Cuv2+4Cu2Cv2
Cu2

2π/
(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2

Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/(√−Cuw2Cv2+CuvCuwCvw+Cu2Cvw2−Cuv2Cw2−4Cu2Cv2Cw2
Cuv2π+4Cu2Cv2π )/

(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;(2√2π3/2√−σac2σbb + 2σabσacσbc − σaaσbc2 − σab2σcc + σaaσbbσcc) ;

gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2gamma2[z , r , q ] = OC1 ∗OC2trip ∗Exp[L] ∗Exp [− (Cuw2 (Cv2 − 4C00Cv2) + 4C00Cu2Cvw2

−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2−4Cu2CvCvwCw +Cuv2Cw2

+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)+4Cu2Cv2Cw2 +Cuw(4C00CuvCvw − 2CuCvCvw − 2CuvCvCw + 4CuCv2Cw)
−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2−4C00Cuv2Cw2 + 4Cu2Cv2Cw2

−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/−16C00Cu2Cv2Cw2 +CuCuv(−2CvwCw + 4CvCw2) +Cu2 (Cvw2 − 4Cv2Cw2))/
(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;(4 (Cuw2Cv2 −CuvCuwCvw −Cu2Cvw2 +Cuv2Cw2 + 4Cu2Cv2Cw2))] ;
Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T

0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];Phi2[z , r , q ] = Exp [−z(m[t])2 − r(m[s])2 − q ∫ T
0 (m[s])2 ds + (λ−κ)T2 ] ∗ gamma2[z, r, q];

dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);dzdrPhi2[q , t , s ] = ((Derivative[1, 1, 0][Phi2][z, r, q]/.z → 0)/.r → 0);
moment2 =moment2 =moment2 =
NIntegrate [S02qExp[s ∗ ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],NIntegrate [S02qExp[s ∗ψ[2] + (t − s) ∗ ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, t, s],
{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+{q, 0,∞},{t, 0, T},{s, 0, t}]+
NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],NIntegrate [S02qExp[t ∗ψ[2] + (s − t) ∗ψ[1] + 0.5 ∗ ρ∧2 ∗ σBM∧2 ∗ (s + t)]dzdrPhi2[q, s, t],
{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];{q, 0,∞},{t, 0, T},{s, t, T}];
Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]Print[“First moment = ” <> ToString[moment1]]
Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]Print[“Second moment = ” <> ToString[moment2]]
Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]Print[“Variance = ” <> ToString[moment2 −moment1∧2]]
Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]Print[“SD = ” <> ToString[Sqrt[moment2 −moment1∧2]]]
Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]Print[“mu tilde = ” <> ToString[Log[moment1/S0]/T ]]
Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]Print [“sig tilde = ” <> ToString [Sqrt [Log [ (moment2−moment1∧2)+(moment1)2(moment1)2 ]/T ]]]
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Appendix D

CD contents

The CD contains TWO folders. Folder 1 contains all Mathematica Codes for Analytical approximation
into four subfolders.

Subfolder rho0 contains all Mathematica codes for the analytical approximation (moments, evolution
of lognormal parameter by solving moments, option prices under both GIG and lognormal model) under
the main model (geometric Lévy model) under the condition of ρ = 0 between the two Wiener processes.
The exported analytical moments data from Mathematica notebook GL 2nd moment 100 rho0 are in
the GL 2nd moment 100 rho0 CSV file. The exported option prices and moments values from MATLAB
are in the VWAP GL MC rho0 CSV file.

Subfolder GBM contains all Mathematica codes for the analytical approximation (moments, option
prices under both GIG and lognormal model) under the GBM model.The exported analytical moments
data from Mathematica notebook GBM 2nd moment 100 rho0 are in the GBM 2nd moment 100 rho0
CSV file. The exported option prices and moments values from MATLAB are in the VWAP GBM MC
rho0 CSV file.

Subfolder rho03 contains all Mathematica codes for the analytical approximation (moments, option
prices under both GIG and lognormal model) under the main model (geometric Lévy model) under the
condition of ρ = 0.3 between the two Wiener processes. The exported analytical moments data from
Mathematica notebook GL 2nd moment 100 rho03 are in the GL 2nd moment 100 rho03 CSV file. The
exported option prices and moments values from MATLAB are in the VWAP G MC rho03 file.

Subfolder rho05 contains all Mathematica codes for the analytical approximation (moments, option
prices under both GIG and lognormal model) under the main model (geometric Lévy model) under the
condition of ρ = 0.5 between the two Wiener processes. The exported analytical moments data from
Mathematica notebook GL 2nd moment 100 rho05 are in the GL 2nd moment 100 rho05 CSV file. The
exported option prices and moments values from MATLAB are in the VWAP GL MC rho05 file.

Folder 2 contains all MATLAB codes used in this thesis.
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[24] Eberlein, E. Jump-type Lévy processes. In Handbook of Financial Time Series. Springer, 2007.

[25] Eberlein, E., and Keller, U. Hyperbolic distributions in finance. BERNOULLI 1 (1995),
281–299.

[26] Embrechts, P. A property of the generalized inverse gaussian distribution with some applications.
Journal of Applied Probability 20 (1983), 537–544.

[27] Fama, E. F. Mandelbrot and the stable paretian hypothesis. The Journal of Business 36 (1963),
420.

[28] Fletcher, C. A. J. Finite Difference Schemes and Partial Differential Equations, vol. 1. Spring
Verlag, 1991.
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