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Abstract

The aim of this dissertation is to study stochastic Navier-Stokes equations (SNSE) on 2D rotating
spheres in Hilbert space perturbed by pure jump Lévy noise of β-stable type. The first goal
is to establish the well-posedness of solutions to this class of equations. The second goal is to
investigate qualitative questions on ergodicity, asymptotic behaviour and random dynamics. In
Chapter 2, we review the analytic and probabilistic preliminary required to present the main
results of the thesis. Then we introduce the background material on Hilbert space valued
cylindrical Lévy noise via subordination of β-stable type. In Chapter 3, we prove the existence
and uniqueness of solutions to the SNSE under suitable assumptions of noise and forcing and,
in the second part, we deduce the existence of an invariant measure with measure support.
Chapter 4 is devoted to the study of random dynamical systems generated by our SNSE. In
particular, we prove that, with sufficient regularity, there exists a finite-dimensional random
attractor for our SNSE. Moreover, such a random attractor supports a Feller Markov Invariant
measure.
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Preface

This thesis is concerned with stochastic Navier-Stokes equations on the 2D rotating unit sphere,
with external force perturbed by an additive stable Lévy noise. (It is called SNSE in short.)
The goal is to perform a systematic analysis of rotating stochastic fluid with Lévy noise on
spheres, in attempting to extend the work initiated by Goldys et al. [14, 20] under Wiener
noise.
The approach taken here is functional analytic and measure-theoretic. This means that the
SNSE is interpreted as a random nonlinear PDE in a Hilbert space (H, | · |). We do not address
in this thesis any computational aspects, despite the presence of this problem in our thoughts;
neither do we address control-theoretic questions or fluid mechanical problems.
In Chapter 1, we provide a comprehensive survey of Stochastic Navier-Stokes equations with
Lévy noise. We aim to summarise, using a homogeneous notation, the main ideas, and ap-
proaches in the literature of SNSE which relates to our studies.
In Chapter 2, we start with a collection of some known definitions and theorems that we will
make use of in the rest of the thesis. This material is necessary for the development in later
chapters. Then we give an overview of the theory of Cylindrical Lévy processes, then we
investigate their stochastic Integrals and present a new integration (Fubini) theorem.
Chapter 3 was devoted to the issue of well-posedness and invariant measure. Namely, the
existence and uniqueness of the solution and its continuous dependence on the initial data.
In particular, we prove the existence of a weak solution via Galerkin approximation, then
following standard arguments in the classical theory of NSE in the spirit of Lion and Prodi
[74], Temam [10], the weak solution is proved to be unique. Moreover, the solution is shown
to depend continuously on the initial datum. Furthermore, following a semigroup method in
Brzezniak and Capinski [19], the solution is shown to be strong indeed. Finally, we deduce the
existence of invariant measures and establish that an invariant measure is supported in V .
The results deduced in Chapter 3 allow us to study the random dynamics of our SNSE in
Chapter 4. Under suitable conditions, we prove that our stochastic Navier-Stokes system gen-
erates a random dynamical system. Moreover, we prove that the generated random dynamical
system has a finite-dimensional compact random attractor. Finally, we show that the attractor
carries an invariant Markov measure.
In Chapter 5 we provide a conclusion and discuss a summary of our contribution and limitation
of our work. We also discuss possible future extensions of the line of research in this thesis.
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CHAPTER 1

Introduction

1.1 Motivation
In this thesis, we initiate a systematic study of well-posedness, invariant measures and asymp-
totic behaviour for stochastic Navier-Stokes with Lévy Noise of stable-type on a 2D rotating
sphere. This thesis is motivated by the existing studies of the following five areas:

• Navier-Stokes Equations on spheres
• Stochastic Navier-Stokes Equations (SNSE) in 2D bounded smooth domain
• Stochastic PDE perturbed by Lévy Noise
• SNSE perturbed by Lévy Noise in 2D bounded smooth domain
• Asymptotic behaviour of SNSE and the notion of random attractor

Why would one study Navier-Stokes equations on spheres?
Problems arising in meteorology naturally reduce to fluid equations on a 2D manifold. The
deterministic Navier-stokes equations (NSE) on the sphere serves as a powerful tool in mod-
eling geophysical flow ([82, 83]) and has been an object of intensive study since 1990. Many
authors have studied the NSE on the unit sphere. Notably, Il’in and Filatov [64, 66] considered
the existence and uniqueness of solutions to these equations and the estimation of the Haus-
dorff dimension of their global attractors [65]. Teman and Wang studied the inertial forms of
NSEs on the sphere while Teman and Ziane proved that the NSE on a 2D sphere is a limit
of NSE defined a spherical cell [104]. In another direction, Cao, Rammaha and Titi proved
the Gevrey regularity of the solution and found an upper bound on the asymptotic degrees of
freedom for the long-time dynamics [24].
Why Stochastic Navier-Stokes Equations?
The Navier-Stokes equations subject to random perturbation, such as white noise, can be used
as a model to explain the random fluctuations observed in the velocity profile of viscous in-
compressible fluid flow. Such a perturbed system is described as a nonlinear stochastic system
known as stochastic Navier-Stokes equations (SNSE). Stochastic analysis of such equations al-
lows one to answer certain difficult problems in hydrodynamics and provides insights into the

3



modeling of turbulence. Stochastic Navier-Stokes equations, as statistical models for turbu-
lent fluid motion, have been intensively studied in the last 20 years. For instance, existence,
uniqueness and ergodicity have been studied by many authors under perturbation with Wiener
noise. It is well known in deterministic theory that there exists a unique global (in time) strong
solution in dimension two. (See Kiselev and Ladyzhenskaya [67] for bounded domain, [71]).
Much of the results in deterministic theory have been generalized to the stochastic case with
Wiener perturbation and now it is well known that SNSE has a unique global strong solution
in dimension two, comparable to the deterministic case.
Why Lévy Processes?
Lévy motions, particularly non-Gaussian process, have been widely applied to Biology, Image
processing, Climate forecast and certainly in Finance and Physics [56, 59, 87, 98, 117]. From a
fluid modeling point of view, although continuous models are good enough in a macroscopic
scale, at an atomic scale, the model breaks down, and the use of a Lévy process is compelling
as fluid is not continuous at a microscopic scale [76]. As a special non-Gaussian stochastic
process, the stable-type process attracts more and more mathematical interests due to the
properties which the Gaussian process does not possess. The tail of Gaussian random variable
decays exponentially which does not fit well for modeling processes with high variability or
some extreme events, such as earthquakes or stock market crashes. In contrast, the stable
Lévy motion has a ‘heavy tail’ that decays polynomially and can be useful for these applica-
tions. For instance, when heavier tails (relative to a Gaussian distribution) of asset returns are
more pronounced, the asymmetric α-stable distribution becomes an appropriate alternative in
modeling [88].
In recent years, stochastic equations driven by Lévy type noise have attracted much attention.
The study of SNSE is now trending toward perturbation with Lévy noise. The study is moti-
vated greatly by engineering applications. For instance, modeling aerodynamical flow subject
to abrupt disturbance due to climate change [93]. It was proved in [41] that there exists an
invariant measure for the 2D SNSE with Lévy noises of square integrable type. Most publi-
cations up to date rule out the interesting α-stable case. To our knowledge there is only one
publication that discusses SNSE with Lévy noise of stable type (see [41]).

The study of the asymptotic behaviour of dynamical system is one of the central problems in
Mathematical Physics. One way to attack the problem for deterministic dynamical systems is
to find conditions for the existence of an attractor, which is a compact set in the phase space
which determines the long-time behavior of the dynamical system. The theory of attractors
for the deterministic infinite dynamical systems is well established. This line of research
was first introduced by [68] and the theory has now been generalised to the stochastic case
with Gaussian noise. In this direction, the notion of random attractors was first introduced
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for random PDE by Brzeźniak, Capiński and Flandoli [19]. Later, it was generalised to the
case of Itô equations (stochastic PDE) by Crauel and Flandoli [34]. In their work, the authors
proved the existence of a global attractor for the SNSE in a 2D bounded domain with sufficient
regular noise. Following this major breakthrough, the study of random attractors has gained
considerable attention during the past decade. A comprehensive survey is presented in [7]. In
this thesis, we generalise the line of research of random attractors in the spirit of Crauel and
Flandoli to the case of discontinuous noise.

1.2 A short introduction to stochastic Navier-Stokes equa-
tions with Lévy noise

In this thesis, we consider the following stochastic Navier-Stokes equations (SNSE) describe
the motion of an incompressible rotating fluid on a 2D unit sphere subject to random external
force:

∂tu + ∇uu − νLu + ω × u + ∇p = f + η(x, t), divu = 0, u(x, 0) = u0 (1.1)
where L is the stress tensor, ω is the Coriolis acceleration, p(t, x) is the pressure of the fluid,
f stands for the deterministic external force and η is the Lévy white noise which can be
informally viewed as the derivative of an H-valued Lévy process. The vector field u(t, x) =
(uθ(t, x), uφ(t, x)) is the velocity, ν is the viscosity. The differential operators ∇ and div are
the surface gradient and surface divergence. Rigorous definitions of all the quantities in this
equation are given in in Chapter 3.
The nonlinear term ∇uu(x) is defined as

πx
( 3∑

i=1
ũi(x)∂xũ(x)

)
= πx ((ũ(x) · ∇̃)ũ(x)) x ∈ S2,

where πx : R3 → TxS2 of x onto TxS2 is the orthogonal projection. The vector field ũ relates
to u as

ũ = u + u⊥, u ∈ TxS2, u⊥ = (u · x)x.
By adding a Lévy white noise term, we obtain the SNSE on the sphere:

∂tu + ∇uu − νLu + ω × u + ∇p = f + η(x, t),
where η = G dL̃

dt , G : H → H is a bounded linear operator.
5



We introduce the spaces
H := {u ∈ L2(S2) : ∇ · u = 0}
V := H ∩ H1(S2)

where H1(S2) is the Sobolev space of vector fields on S2. The inner product of H is the same
as L2(S2) and is denoted as (·, ·) and the corresponding norm is | · |.
Applying the Leray-Helmholz projection, (1.1) can be recasted into an abstract evolution equa-
tion in H = L2(S2) without the pressure term:

du(t) + Au(t)dt + B(u(t), u(t))dt + Cu = fdt + GdL(t), u(0) = u0, (1.2)
where f is the deterministic forcing and u0 is the initial velocity. The operator A is defined as

A : D(A) ⊂ H → H, A = −P(∆ + 2Ric), D(A) = H2(S2) ∩ V . (1.3)
We set

B(u, v) = π(u,∇v), B(u) = B(u, u).
The operator C = PC1 is well defined and bounded in H and C1 is the Coriolis operator
C1 : L2(S2) → L2(S2) is defined by the formula

(C1v)(x) = 2Ω cos θ(x × v(x)), x ∈ S2.

1.2.1 The linear equation
In the linear case and in the absence of deterministic external force, the equation has the form

dz + Az + Cz = GdL(t), z(0) = 0. (1.4)
Using classical argument (See [29]), one can show there exists unique solution to (1.4), given
by

z(t) =
∫ t

0
e−(t−s)(A+C)GdL(t).

Using Lemma 3.2.7 in Chapter 4, one can show
z ∈ L4(0,T ;L4(S2)) P a.s.

1.3 Literature, outline of Chapters and Contributions
In this thesis, we answer the following questions:

• Existence and uniqueness of (weak and strong) solutions of (1.1) and continuous depen-
dence on initial data;
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• Existence of invariant measures of (1.1);
• Existence of a finite dimensional random attractor of (1.1).

By removing the noise term η(x, t) in (1.1), one obtains the deterministic Navier-Stokes equa-
tions describing the incompressible flow past a 2D sphere. These equations are extensively
studied dates back to the 90’s. Notably, Il’in and Filatove[64] proved there exists unique gener-
alised solutions using the Galerkin method. By letting viscosity ν tends to 0, they obtain the
solution of the Euler equation in the limit. Moreover, the Hausdorff dimension of the global
attractor is estimated. Temam and Wang [106] established the existence of an inertial form of
the equations. They also studied the associated reaction-diffusion system and found conditions
for the spectral gap. For the stochastic counterpart, the questions of existence and uniqueness,
and continuous dependence on initial data have been thoroughly investigated in Goldys et al.
[14] where η(x, t) is a Gaussian white noise. In the same publication, the existence of invariant
measures is also deduced from the well-posedness result. The existence of random attractor
for (1.1) is proved in a recent publication [15]. In particular, they assume the driving noise is
given as an infinite dimensional Wiener process. In contrast, most existing works on random
attractors assume finite dimensional noise.
SNSE with Wiener noise has been intensively studied. See for instance the classical publica-
tions, Bensoussan and Temam [10], Bensoussan [9], Flandoli and Gatarek [53] , Sritharan and
Menaldi [78]. For books, readers are referred to Vishik and Fursikovn [112], Capinski and
Cutland [25].
SNSE driven by Lévy noise attracts much attention in recent years. The question of existence
and uniqueness of solutions to the SNSE has been thoroughly investigated in 2D domain
(bounded and unbounded). For strong solution, see [39, 50]. For Mild solutions, see [49]. For
Martingale solutions, see [43, 93].
Dong and Xie [39] study the following two forms of SNSE driven by additive Poisson noise:⎧⎨

⎩
d
dtX(t) + νAX(t) + BX(t) = ∫U f (X(t−), u)Ñ(dt, du),
X(0) = x, (1.5)

and additive Poisson and nondegenerate Wiener noise on 2D Torus:⎧⎨
⎩

d
dtX(t) + νAX(t) + BX(t) = ∫U f (X(t−), u)Ñ(dt, du) + √QdW (t),
X(0) = x, (1.6)

where U is a cylindrical Wiener process with covariance operator I , Wt is a cylindrical Wiener
process with covariance operator I , Q is a nuclear operator on the space H . The term Ñ :=
N(ds, du)−λ(du)ds is a compensated Poisson random measure, where λ(du) is a σ -finite Lévy
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measure with an associated Poisson random measure N(ds, du) such that
EN(ds, du) = λ(du)ds.

Moreover, the process W (t) and Ñ(ds, du) are mutually independent.
By fixing some measurable subset Um of U with Um ↑ U and λ(Um) < ∞. Under the hypothesis
Hypothesis 1 There exists positive constants C, K such that

• ∫U |f (0, u)|2λ(du) = C < ∞;
• ∫U |f (x, u) − f (y, u)|2λ(du) ≤ K|x − y|2;
• sup|x|≤M

∫
Uck

|f (x, u)|2λ(du) ↓ 0 as k ↑ ∞
Dong and Xie proved that there exists a unique global strong (pathwise) solution for the
equation (1.5) and a unique weak solution to (1.6), using the Galerkin approximation argument.
Existence of invariant measures is also established for both equations. More precisely, this
existence theorem states that,
Theorem 3.3 [39] Suppose that Hypothesis 1 holds.

(i) For the initial value x ∈ H , both (1.5) and (1.6) have unique weak solutions X in H .
(ii) Moreover, if f ∈ V × U → V is measurable, then, if the initial value x ∈ V , (1.5) has a

unique strong (pathwise) solution in D(A) after the first jump time of N(ds, du).
(iii) There exists an invariant probability measure for X(t) which is the solution of (1.5) and

(1.6) which is loaded on V .
In comparison to our studies, we use cylindrical stable noise as the noise term, so all three
assumptions in Hypothesis 1 cannot be satisfied as ∫U u2λ(du) could be infinite. Hence we have
to use a different argument to tackle well-posedness, which will be detailed in Chapter 3.
The existence and uniqueness result in [39] is further generalised to 2D unbounded domain
case. In particular, Fernando and Sritharan [50] consider the SNSE with jump noise and mul-
tiplicative white noise. They proved existence and uniqueness of a strong (pathwise) solution.
The difficulty in unbounded domain is the lack of compactness. To overcome this difficulty,
they use a method developed in Sritharan and Menaldi [78] for unbounded domain in Gauss-
ian case[78], which exploits the local monotonicity of stokes operator and nonlinear term, and
used a modified Minty-Browder technique.
Sritharan et al.[49] study mild solutions of the SNSE with additive noise given as a compensated
Poisson random measure of the following form:

du(t) = −[Au(t) + B(u(t))] +
∫

Z
φ(x, s)Ñ(dt, dx)

u(0) = u0.
in Lp space, for p > m, m ≥ 2. Where Z is a separable Banach space and φ belongs to the set
of progressively measurable functions, which are square integrable w.r.t. the Lévy measure
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ν. The main result in [49] is Theorem 3.2, which proves the existence and uniqueness of a
local mild solution to a stochastic Navier-Stokes equation with jump noise in the function space
L∞([0,T], Jp). Here Jp is a separable Banach space with Lp(Rn) norm. The crux of the proof is
an estimate of the nonlinear term (u ·∇)u which derived using the properties of the fractional
power of the Stoke operator (See Giga and Miyakawa [58]) and the rich mathematical proper-
ties of the compensated Poisson random measure. Theorem 3.2 generalises the earlier results
of Lp theory of local solutions for deterministic NSE. This work is subsequently generalised
to the case p ≥ m, p ∈ [m,∞). See the recent publication [79].
Under the same framework in [39], Dong and Xie [40] proved the ergodicity of the two-
dimensional Navier-Stokes equation perturbed by Lévy noise with Wiener term: (1.6), under
the nondegeneracy assumption of noise covariance operator Q:

• Q : H → H is a bounded linear operator, injective, with range R(Q) dense in D(A 1
4 + α

2 )
and D(A2α) ⊂ R(Q) ⊂ D(A 1

4 + α
2 +ε).

The main contribution of the publication [40] is the proof of strong Feller property, which
relies on some a priori estimates on D(Aα), α ∈ [1/4, 1/2), a stopping time technique (These
were used in [51]), and the Bismut-Elworthy-Li formula.
Sritharan and Mohan [79] consider the controlled stochastic Navier-Stokes equation with jump
noise and multiplicative white noise in a two-dimensional bounded domain. Using a semi-
martingale formulation, the authors seek to find a solution to the martingale problem as well
as the associated probability law. The existence and uniqueness of invariant measures follow
closely to the ergodic results of the uncontrolled counterpart, which already been studied in
[40]. Then it is established that, for the controlled SNSE driven by Lévy noise, it is possible
to choose a stationary control corresponds to a statistically stationary turbulent state at the
minimum cost functionals.
One must point out that, the method to prove ergodicity in [40] is not applicable in our case
in this thesis in obtaining strong Feller and irreducibility, as the three conditions outlined in
Hypthesis 1 are not satisfied in the case of stable noise.
Regarding the study of SNSE with stable type Lévy noise, the only result to our knowledge is the
work [41] due to Dong, Xu and Zhang. The authors consider the stochastic 2D Navier-Stokes
equations on the torus driven by an infinite-dimensional cylindrical Lévy process (in particular
the stable process). Under some assumptions on the Lévy measure of the noise, the well-
posedness of the problem is established. In more detail, they constructed weak solution using
Galerkin approximation, and deduced moment a priori estimate and the existence of probability
law using a version of Itô foruma for Lévy process (see p.226 in [5]). Pathwise uniqueness was
proved using classical method of the 2D NSE. Then, invoking the famous Yamada-Watanabe
theorem, the uniqueness of weak solution (in probabilistic sense) is established. Morever, the
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authors proved the existence of invariant measures by using the classical Krylov-Bogolyubov
argument. But the uniqueness of the invariant measure has remained open.
In comparison to our result of weak solutions in Chapter 3, we also use Galerkin method to
construct a weak (pathwise) solution. However our approach is functional analytic and the ex-
istence result is global indeed. Based on our specific assumption on noise z ∈ L4([0,T]; L4(S2)∩
H), we deduce a priori estimates (using standard PDE argument) which yields global existence.
The Navier-Stokes equations driven by the compensated Poisson random measure in 3D
bounded domains were also studied. Dong and Zhai [43] consider the martingale problem
associated to the SNSE, i.e., a solution defined as a probability measure satisfying suitable con-
ditions. In 2013, the existence results on Lévy noise were generalised to the critical case of
2D and 3D unbounded domains by Motyl [80].
Finally, it worth mentioning that there is one publication (due to Varner [109], see also his
PhD thesis [110]) discuss the ergodicity of SNSE on the sphere under Gaussian kick-force. In
particular, the author proved the existence and uniqueness of an invariant measure for the
kick-forced Navier-Stokes system on the 2D sphere, first without deterministic force and then
with a time-independent deterministic force. The analogous result for the white noise forced
Navier-Stokes system on the 2D sphere without a deterministic forcing is also shown. Fur-
thermore, it was shown the measure is supported in the full space of admissible vector fields
of the sphere. One must point out that this approach is quite different from the approach we
have taken in this thesis, as we will see in subsubsection 1.3.3.

In the case where noise is given by stable Lévy noise on the sphere, all three questions have
remained open. These questions will be addressed in this thesis. In other words, this is the
first thesis on stochastic Navier-Stokes equations with Lévy noise on the rotating sphere. There
has been a few recent contributions (see for instance [14, 15, 109]) concerned with the similar
equations on the 2D rotating sphere but perturbed by Gaussian noise. We review some of these
which inspire our study of weak solutions, invariant measures and the Random dynamical
system generated by the stochastic Navier-Stokes equations with Lévy noise in Chapter 3 and
4.
Our plan in the remainder of this section is to sketch the main ideas and approaches in some
related studies relate to this thesis. We do not enter too much detail and refer readers to the
original publication if further clarification is required.

1.3.1 H-valued Lévy Process and its Stochastic Calculus
In Chapter 2, we review the basic properties of Lévy processes in Hilbert space. We begin
with a few well-known theorems describing the structure of Lévy processes. Then we study
stochastic integrals w.r.t. Hilbert space-valued Lévy processes not necessarily square integrable.
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In section 2.3, we present a new version of stochastic Fubini theorem for Lévy process, which
is developed in attempting to recover the Da Prato-Kwapień-Zabczyk’s factorization technique
which is used for p > 2 moments. The precise result we prove is the following.

Theorem 3.3.4. Let U and E be separable Hilbert spaces. Let (Ω,F,P) be a probability
space and let T > 0 be fixed. Assume that the mapping [0,T] × [0,T] × Ω ∋ (s, σ, ω) 12
Φ(s, σ, ω) ∈ L(U,E) is a strongly measurable with respect to the σ -algebra B([0,T]) ⊗ PT ,
where PT stands for the predictable σ -algebra in [0,T] × Ω. More precisely, we assume that
for every y ∈ U the mapping [0,T] × [0,T] × Ω ∋ (s, σ, ω) 12 Φ(s, σ, ω)y ∈ E is measurable
with respect to the σ -algebra B([0,T]) ⊗ PT . Furthermore, assume that L is a U-valued Lévy
process defined as L(t) := W (Z(t)), Z(t) is a subordinator process belonging to Sub(p), i.e.
Z(t) has intensity measure satisfying

ρ({0}) = 0,
∫ ∞

1
ρ(dξ) +

∫ 1

0
ξρ(dξ) < ∞

∫ 1

0
ξ p

2 ρ(dξ) < ∞
where ρ and ν are respectively the intensity measure on R and Lévy measure on U0. One
relates ρ and ν as

ν(Γ) =
∫ ∞

0
ζs(Γ)ρ(ds), Γ ∈ B(Y ),

Then ∫ T

0

(∫ s

0
Φ(s, σ )dL(σ )

)
ds =

∫ T

0

(∫ T

σ
Φ(s, σ )ds

)
dL(σ )

One must also point out that we were not able to recover the Da Prato-Kwapień-Zabczyk’s fac-
torization technique, due to the contradiction between the fractional parameter of the Riemann
Liouville operator and the stability index of stable process. Nevertheless, the stochastic Fubini
theorem is quite new compare to other versions in the literature which were developed for
stochastic integrals with respect to the compensated Poisson random measure in martingale
type spaces [118]. One must point out that there are different versions of stochastic Fubini
theorems that have been studied by many authors, see the books [37, 87] and also the PhD
thesis [118]. However, these versions do not cover the interesting stable process case which
we do.
In section 2.4, we review the theory of subordinators and H-valued subordinated processes,
based on the publication [23], and complete some missing proofs of several important results.
In view of the above, the main contribution of Chapter 3 is

• A new stochastic Fubini theorem (Theorem 2.4.4) covering a broad class of functions
with respect to Poisson random measure.
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Notation Let (Ω,F,P) be a complete probability space in which an increasing and right con-
tinuous family of complete σ -algebras {Ft , t ≥ 0} of F is defined. Let u(t, x), ν and p(t, x) be
respectively the velocity, viscosity parameter and pressure of an incompressible fluid. More-
over, Let WQ be a Q-Wiener process. The distributional derivative of WQ(t), t ≥ 0 represents
one source of external force acting on the fluid. When Q = I , we have the cylindrical Wiener
process. Let (·, ·) denotes the inner product in Hilbert space and denote the induced duality by
⟨·, ·⟩. The space D([0,T]; H) is the space of all right-continuous with left-hand limits functions
endowed with the usual Skorohod topology maps from [0,T] to H . The element of D([0,T]; H)
is defined on [0,T] and takes value in H .

1.3.2 Well-posedness
It is well accepted fact that SPDE do not possess exact solutions, but rather probability distri-
bution. Hence, the first question came into our mind is: in what sense can we solve SNSE with
stable Lévy noise. In 2D, as mentioned earlier, it is now well known that the SNSE with both
Gaussian and certain Lévy noise has unique global strong solution [40, 50, 78]. The fundamen-
tal idea for establishing well-posedness is to find conditions to ensure existence and uniqueness
of solutions. In the first part of Chapter 4, we will prove the global existence (and uniqueness)
of a weak and strong solution of (1.2). Let us now summarise the key well-posedness results
obtained in this thesis.

1.3.2.1 Weak solutions
It is a well known fact in the theory of SPDE (or PDE) that, many equations do not have
classical solutions and have to be solved in some weaker sense. Heuristically speaking, when
seeking for solutions, one often starts with finding the so-called weak solution. Let us consider
the SNSE as an abstract Itô equation in variational form

d(u(t), v) + ⟨⟨Au(t) + B(u(t)) + Cu(t), v⟩dt = (f , v)dt + (GdL(t), v)
with initial condition

(u(0), v) = (u0, v)
for any v in the space V . This requires the following assumptions on the initial data

f ∈ V ′, z ∈ L4
loc([0,∞);L4 ∩ H), u0 ∈ H

and the solution is expected to be an adapted (and measurable) stochastic process u = u(t, x, ω)
satisfying

u ∈ D(0,T ; H) ∩ L2(0,T ; V )
12



In Chapter 3 we study existence and uniqueness of solutions to (1.2) and the existence of an
invariant measure. We prove six new theorems, in which we gain a complete understanding
of the well-posedness of (1.2). One must point out that our proof of existence and uniqueness
of a weak solution (See Theorem 3.2.11 ) is inspired from the Gaussian counterpart which has
been thoroughly investigated in Goldys et al. [14].
In Theorem 3.2.11, we prove the existence and uniqueness of a weak solution (or the pathwise
variational solution) to the SNSE on the rotating sphere for a H-valued Cylindrical stable noise.
Theorem 3.2.11 states that,
For any α ≥ 0, z ∈ L4loc([0,∞);L4(S2) ∩ H), v0 ∈ H and f ∈ V ′, there exists a unique solution v
of equation (3.75).
Let us point out here that Theorem 3.2.11 mimics Theorem 3.2 in Gaussian case [14], given
the suitable conditions of noise are assumed. Here we sketch some main lines of the proof
of 3.2.11. Using the Leray-Helmholtz projection, we recast (1.2) into a functional equation in
H = L2(S2):

du(t) + Au(t)dt + B(u(t), u(t))dt + Cu = fdt + GdL(t), u(0) = u0.
Then for any α > 0, by introducing a stationary Ornstein Uhlenbeck process zα which satisfies
the linear equation (the auxiliary Ornstein Uhlenbeck process)

dzα + (νA + C + α)zαdt = GdL(t), t ∈ R,
where G : H → H is a bounded linear operator, L(t), t ∈ R is a two-sided Lévy process as
defined in (1.2). Let us remark that α > 0 is arbitrary in the proof of existence and uniqueness
but one would have to choose cautiously for the proof of existence of random attractors. As
we will show in section 3.3 the process v(t) = u(t) − zα(t) is a solution to the deterministic
nonlinear PDE for each fixed trajectory of the process zα⎧⎨

⎩
d+
dt v(t) + (νA + C)v(t) = f − B(v(t) + zα(t)) + αzα(t)
v(0) = v0

(1.7)

where d+
dt denotes the right hand derivative at t . From this point onward, the existence and

uniqueness of (1.2) reduces to the existence and uniqueness of solutions to the classical Navier-
Stokes equations on the sphere with Coriolis force. This question has been extensively studied
as mentioned earlier. See, for instance, Il’in and Filatov [65]. Thereby one can still use the
classical Galerkin approximation based on expansion into series of vector spherical harmonics.
Thanks to theorem 8.1 in [23], the solution to the auxiliary Ornstein Uhlenbeck (OU) equations
has a L4-solution. Hence, based on this hypothesis, the proof of existence and uniqueness of
(1.2), continuous dependence on initial data, forcing and driving noise follows the same lines as
in Goldys et al.[14], which was achieved in a similar fashion as in the 2D bounded domain case.
This is because, the equations are considered on the surface of the sphere, and the presence
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of the Coriolis force leads to minor modifications in the proof. Let us review the proof in [14].
The existence of weak solutions is proved via the Galerkin approximation argument. The basic
idea that underpins this method is to approximate v : [0,T] → H by functions vL : [0,T] → PL
that take values in a finite-dimensional subspace HL ⊂ H of dimension L. More precisely, the
existence of weak solutions is proved in three steps [47]:

• Construction of approximate solutions;
• Derivation of energy estimates for approximation solutions;
• Convergence of approximate solutions to a solution;

Step 1 To construct an approximation, for any L ∈ N, take
HL = linspan{Zl,m : l = 1, · · · ,L; |m| ≤ l}

as the linear space spanned by the first L eigenfunctions in an orthonormal basis {Zl,m : l =
1, · · · ,L; |m| ≤ l} of H , which may be assumed to be orthogonal in V . In other words, HL is
an L-dimensional subspace of V and PL is the orthogonal projection from H onto HL defined
as

PLv =
L∑
l=1

l∑
m=−l

(v,Zl,m)Zl,m.

One projects the evolution equation (1.7) onto L2([0,T]; HL) and considers the following ap-
proximate problem for (1.7) on the finite dimensional space HL (From now on we will write
∂t for d+

dt ):
⎧⎨
⎩
∂tvL(t) = PL[−νAvL − B(v) − B(v, z) − B(z, v) − Cv(t) + F ],
v(0) = PLv0,

(1.8)

where F = −B(z)+αz+f and operators A, B and C are defined in (1.2). The solution vL is said
to be the Galerkin approximation. In this way, vL is required to satisfy (1.7) up to a residual
which is orthogonal to HL. Notice that the system (1.8) is essentially a system of ODE for vL
which has the equivalent form

d+vL
dt = G(t, vL(t)), t ≥ 0,

where the function G(t, v) is an HL-valued locally Lipschitz continuous with respect to v ∈ HL
and measurable with respect to t . It follows from the theory of ODE that the above system of
nonlinear differential equations has a unique solution defined on some maximum time interval
[0,TL).
Step 2 Extend the solution vL globally in time. Toward this end, one derives some energy
estimates in form of uniform a priori estimates (uniformly in L) and check if the solution is
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bounded for all time. Take the inner product of (1.8) in H with vL(t) one obtains
(∂tvL(t), vL(t)) = −ν(PLAvL, vL) − (PLB(vL), vL) − (PLB(vL, z), vL) − (PLB(z, vL), vL) − (PLCvL, vL) + ⟨F , vL⟩
Using the identities

(∂tvL(t), vL(t)) = 1
2
d+

dt |vL(t)|2,
−ν(PLAvL, vL) = −ν(AvL, vL) = −ν|vL|2V ,

(PLB(vL), vL) = (B(vL), vL) = b(vL, vL, vL) = 0, (PLB(z, vL), vL) = b(z, vL, vL) = 0,

(PLCvL, vL) = (CvL, vL) = 0.
One obtains for all t > 0

1
2
d+

dt |vL(t)|2 = −ν|vL(t)|2V − b(vL(t), vL(t), vL(t)) + ⟨F (t), vL(t)⟩ t ∈ [0,TL).
Now one estimates the term 1

2
d+
dt |vL(t)|2 by estimating the right hand side of the above equality.

Using a basic trilinear estimate combine with the Young inequality one has that,
|b(vL, vL, z)| ≤ C

ν3 |vL|2|z|4V + ν
4 |vL|2V ,

and
⟨F (t), vL⟩ ≤ |F (t)|V ′|vL|V ≤ 1

ν |F (t)|2V ′ + ν
4 |vL|2V .

Therefore one obtains
∂t|vL(t)|2 + ν|vL|2V ≤ C

ν3 |vL|2|z|4V + 2
ν |F (t)|2V ′ , t ∈ [0,TL). (1.9)

Invoking Gronwall Lemma, one has

|vL(t)|2 ≤ |v(0)|2 exp
(C
ν3

∫ t

0
|z(τ)|4Vdτ

)
+
∫ t

0
2
ν |F (s)|2V ′ exp

(C
ν3

∫ t

s
|z(τ)|4Vdτ

)
ds, t ∈ [0,TL).

Integrating (1.9) in time from 0 to T and using the above inequality we obtain

|vL(T)|2 + ν
∫ T

0
|vL(t)|2Vdt + C

ν3

∫ T

0
|z(t)|2V |vL(t)|2dt + 2

ν
∫ T

0
|F (t)|2V ′dt.

In view of the above it is shown that vL is uniformly bounded (in L ) in the norm L∞(0,∞; H)
and L2(0,∞; V ).

In order to pass to the limit (See Step 3), one also has to show that vL converges to v in the
strong topology L2(0,T ; H). For this one needs an a priori estimate on a fractional derivative
in time of the approximate solution. By taking Fourier transforms (in the time variable t), one
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proves that
the sequence {ṽL,L ∈ N} is bounded in Hγ(0,T ;H1(S2),L2(S2)). (1.10)

where the space Hγ is defined as
Hγ(R; X0,X1) = {v ∈ L2(R; X0) : Dγ

t v ∈ L2(R; X1)} γ > 0.
Step 3 Here one uses a compactness argument prove that a subsequence of approximate
solutions converges to a weak solution to (1.7). In this case, using the Banach-Alaogu theorem,
the existence of uniform bounds in L∞(0,∞; H) and L2(0,T ; V ) allows one to assert the existence
of an element v ∈ L2(0,T ; V ) ∩ L∞(0,∞; H) such that⎧⎨

⎩
vL ⇀ v, weakly in L2(0,T ; V ),
vL ⇀ v, weakly* in L∞(0,T ; H) as L → ∞. (1.11)

Now one needs the following compactness theorem (for fractional derivative ).

Theorem 1.3.1 (Chapter III, Theorem 2.2 [105]). Suppose that X0 ⊂ X ⊂ X1 is a Gelfand triple
of Hilbert spaces and the injection of X0 into X is compact. Then for any bounded set K ⊂ R
and γ > 0, the injection of Hγ

K(R; X0,X1) into L2(R; X) is compact.
Using this result and the estimate (1.10), we deduce that

vL → v strong in L2(0,T ;L2(S2)). (1.12)
The convergence results (1.11) and (1.12) allow one to pass to the limit. Now one claims that
the weak limit v is indeed a weak solution to the evolution equation (1.7). Toward this end,
it suffices to check that for any differentiable function ψ : [0,T] → R such that ψ(T) = 0 and
φ ∈ Hl ⊂ Hl for some l ∈ N+ the following approximate equation

−
∫ T

0
(vL(t), ψ′(t)φ)dt = −ν

∫ T

0
(PLAvL(t), ψ(t)φ)dt

−
∫ T

0
(PLB(vL(t)), ψ(t)φ)dt −

∫ T

0
PLB(vL(t), z, ψ(t)φ)dt

−
∫ T

0
PLB(z, vL(t), ψ(t)φ)dt −

∫ T

0
⟨PLF (t), ψ(t)φ⟩dt + (vL(0), ψ(0)φ) (1.13)
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converges to

−
∫ T

0
(v(t), ψ′(t)φ)dt = −ν

∫ T

0
(v(t), ψ(t)φ)dt

−
∫ T

0
b(v(t), v(t), ψ(t)φ)dt −

∫ T

0
B(v, z, ψ(t)φ)dt

−
∫ T

0
B(z, v(t), ψ(t)φ)dt −

∫ T

0
⟨F , ψ(t)φ⟩dt + (v(0), ψ(0)φ) (1.14)

Passing to the limit with the sequence L is easy for the linear terms in (1.13): −ν ∫ T
0 (PLAvL(t), ψ(t)φ)dt

and − ∫ T
0 ⟨PLF (t), ψ(t)φ⟩dt + (vL(0), ψ(0)φ), since the arguments under the integral are clearly

bounded. The other three nonlinear terms can also be shown to be bounded using the fol-
lowing Lemma.

Lemma (Lemma 4.3[14]). Suppose u : [0,T]×S2 → R2 is a C1 function and all first derivatives
of components of u are bounded on S2 × [0,T]. Suppose vm → v weakly in L2(0,T ; V ) and
strongly in L2(0,T ;L2(S2)). Then

∫ T

0
b(vm(t), vm(t), u(t))dt →

∫ T

0
b(v(t), v(t), u(t))dt

In the same situation as in other similar compactness arguments, one has existence but not
uniqueness since the subsequences of approximate solutions vL could converge to a different
weak solutions. Nevertheless, the uniqueness of the solution to (1.7) can be established using
the classical argument of Lion and Prodi [74] with slight modification due to the additional
noise term. Using a similar argument to the proof of uniqueness, the continuous dependence
on the deterministic force and the driving noise is also established.

1.3.2.2 Strong solutions
By imposing higher regularity on the forcing term, we then prove a new existence theorem
for the strong solution

Theorem 3.2.16. If
z ∈ L4

loc([0,∞);L4(S2) ∩ H), f ∈ H, v0 ∈ H,
then u(t) ∈ V for all t > 0 almost surely. Moreover, if

∞∑
l=1

|σl|βλβ/2
l < ∞ ,
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then the theorem holds.

Our methodology to prove Theorem 3.2.16 is motivated by a fixed point argument used in
Brzeniak, Capinski and Flandoli [19] in their study of the existence of random dynamical
system (stochastic flow) φ. The authors were mainly interested in the existence of global
(random) attractors. In more detail, the authors in [19] study the following 2D abstract Navier-
Stokes equations with real noise in a Hilbert space:⎧⎨

⎩
du(t)
dt + Au(t) = B(u(t), ξ(t)) + f , t ≥ 0
u(0) = u0,

(1.15)

where ξ(t) is a continuous stationary process on (Ω,F,P) with values in E and is defined as
ξ(t, ω) := ω(t), ω ∈ Ω. Here, E is a closed non-empty subset of Rm and Ω = DE([0,∞)) is the
space of all RCLL functions endowed with the usual skorohod topology (See Chapter 4 for
definition.) The mild form of (1.15) is

u(t) = S(t)u0 +
∫ t

0
S(t − s)(B(u(s), ξ(s)) + f )ds. (1.16)

They prove the following theorem, via a fixed point argument, which contains two important
results: existence and uniqueness of a strong solution and the existence of a stochastic flow φ.

Theorem 3.1 [19]. For all u0, f ∈ H and ω ∈ Ω there exists a unique solution u ∈ C(0,∞; H)∩
L2loc(0,∞; V ) of the mild solution (1.16), which belongs to C(ε,∞; V ) ∩ L2loc(ε,∞; D(A)) for all
ε > 0. Moreover, if u0 ∈ V , then u ∈ C(0,∞; V ) ∩ L2loc(0,∞; D(A)). Finally, if we define
φ : T × Ω × H → H as

φt(ω)u0 = u(t;ω;u0), t ∈ T, ω ∈ Ω, u0 ∈ H
where u(·;ω, u0) is the solution to (1.16) corresponding to given ω ∈ Ω and u0 ∈ H , then φ
satisfies the assumptions (1)-(4).
The proof of Theorem 3.1 in Brzeniak, Capinski and Flandoli [19] follows three main steps.
The first step is to establish local existence and uniqueness of a solution of (1.16) with initial data
u0 ∈ V , using the classical contraction mapping theorem. One proves that a strong solution
at least exists locally in time whenever the initial condition u0 ∈ V . Next, one constructs a
global solution with initial data u0 ∈ V . This is achieved by proving a a priori estimate in
V with initial condition u0 ∈ V . The Last step is to construct a global solution with initial
data u0 ∈ H . This is achieved by approximation. Using the fact V is dense in L2, one takes
a sequence of solutions {un} of (1.16) in the space YT := C(0,T ; V ) ∩ L2(0,T ; D(A)) with initial
data {u0,n} ⊂ V converging to u0 in H , and un can be shown to be Cauchy. Moreover, the limit
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function is shown to satisfy (1.16). This concludes the claim of the global existence of strong
solution. Under this fixed point argument, we are able to prove the existence (and uniqueness)
of strong solution in our case. Following the same strategy in the weak solution case, we make
change of variable v(t) = u(t)−z(t), prove Theorem 3.2.16 by first studying the well-posedness
of a strong solution to the transformed problem. In section 3.4, using the usual contraction
mapping principle, we prove a strong solution exists at least locally in time whenever the initial
condition u0 belongs to space V . Then following the same steps as described above in [19] we
show the solution exists globally in time via a successive approximation of contractions.
Finally, Let us point out that our proof of the existence theorem (Theorem 3.2.16) can also be
accomplished under the classical Galerkin approximation argument.

1.3.3 Invariant Measures
Invariant measures of stochastic Navier-Stokes equations with Lévy noise has been studied
in the paper [11, 41]. In the final section of chapter 3, we prove the existence of invariant
measure of (1.2) by establishing the three usual criteria: Markov property, Feller property, and
tightness of the probability law. The first two properties follow naturally from our study of well-
posedness in Chapter 3 (see subsections 3.5.1). Tightness is given by the Krylov-Bogoliubov
argument for Markov processes, which requires some a priori estimates. In obtaining these
a priori estimates, we initially attempted to mimic the arguments in Chapter 15.4 of the book
[36]. A major difficulty arised when analyzing the estimate d+

dt |v(t)|2: the usual estimates for
the nonlinear term b(v(t), z(t), v(t)) yield a term |v(t)|2|z(t)|44, so when averaging over time, we
were not able to deduce any bound in H for |v(t)|2 under classical lines as the Birkhoff ergodic
theorem fails. Let us now analyse the argument in [36] and see why this classical method fails
to be applicable, that is, when the noise process does not have a finite second moment (our
case).
Flandoli [52] considers the following initial-boundary value problem where the stochastic
Navier-Stokes equation has additive Gaussian white noise in 2D bounded domain D ⊆ R2:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t = ∆u + (u · ∇)u + ∇p + dWQ(t), on [0,∞) × D,
u(t, x) = 0, on [0,∞) × ∂D,
divu(t, x) = 0, on [0,∞) × D,
u(0, x) = u0(x) onD.

Notation: Let H be the closure of the set {u ∈ C∞0 (D,R2) : ∇ · u = 0} in the L2-norm,
|u| = (u, u)1/2 and (u, v) = ∑2

j=0 uj(x)vj(x)dx.
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Let V be the closure of the set {u ∈ C∞0 (D,R2) : ∇ · u = 0} in the norm |u| + |u|V where
|u|2V =

∫
D
(|Dxu(x)|)dx.

More generally, for any p ≥ 2, with slight abuse of notation, denote by Lp the closure of the
set {u ∈ C∞0 (D,R2) : ∇ · u = 0} with respect to the norm

|u|p =
(∫

D
|u(x)|pdx

)1/p
.

Using the Leray-Helmholz projection, the equation is reformulated in a standard way as an
abstract stochastic evolution equation

du(t) = Au(t)dt + B(u(t), u(t))dt + dWQ(t) (1.17)
in a Hilbert space H which is the closure of the space of compactly supported solenoidal
C∞-smooth 2D vector fields on D in the [L2(D)]2 topology. The process W is defined as

W (t) =
∞∑
l=1

σlβlgl

where {βl} is a sequence of mutually independent real Brownian motions defined on a filtered
probability space. Moreover, {σl} is a sequence of positive numbers and {gl} is an orthonormal
basis in H . Following the general way to construct solutions in the additive noise case, set

v = u − WA(t).
Then (1.17) becomes,{

dv
dt = Av(t) + Dx(v(t) + WA(t))(v(t) + WA(t))dt + f (t), t ≥ 0, v(0) = x (1.18)

where
WA(t) =

∫ t

0
S(t − s)dW (s).

The local existence and uniqueness of the solution to the stochastic Navier-Stokes equations
is obtained via a simple fixed point method based on the assumption that the stochastic con-
volution WA(t) is L4 trajectories integrable, i.e.

(∫ T

0
|WA(t)|44

)
< ∞.

Then via the a priori estimates in H and V , the solution is shown to exist globally in time.
A third useful a priori estimate, which plays an important role in the proof of existence of
invariant measure is the following

d
dt |v(t)|2 + |v(t)|2V ≤ (ε + K1|φ(t)|44)|v(t)|2 + K2|φ(t)|44 + 4α2

ε2 |φ(t)|2, t ≥ 0, (1.19)
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where α > 0, ε ≥ 0. φ(t) = WA(t, ω) and y is a mild solution of
dv
dt = Av(t) + Dx(v(t) + φ(t)) · (v(t) + φ(t)) + αφ(t)

With this estimate, together with the hypothesis that WA(·) is continuous in D((−A) 1+2θ
4 ) for

some θ ∈ (0, 1/2), the existence of invariant measures is established in [36]:

Theorem 15.4.1. Under the hypothesis WA(·) is continuous in D((−A) 1+2θ
4 ) for some θ ∈ (0, 1/2),

there exists at least one invariant measure for equation (1.2).

The proof of tightness relies on a dissipativity condition. Roughly speaking, one needs to find
an almost surely finite real random variable r(ω) such that

sup
−∞<t0≤0

|(−A)θut0(0, ω)| ≤ r(ω).

It is a well known fact that D(Aδ) can be compactly embedded into the space H . If ut0 is
denoted as the solution of (1.17) satisfying ut0 (η) = 0; and if one can show that the random
variables (ut0(0),−∞ < λ ≤ 0) are bounded in probability in the space D((−A)θ) for a certain
θ ∈ (0, 1/2), then one concludes immediately that the laws L(X(t, 0)), t ≥ 1 are tight on H .
The proof of Theorem 15.4.1 is in the book [36]. Let us sketch briefly the main steps as we
use the same argument for a similar result in Chapter 3. The proof can be established by
verifying the following two claims.
Claim 1
There exists α > 0 and a random variable ξ such that P almost surely

|vα(t, s)| ≤ ξ ∀ t ∈ [−1, 0] and all s ≤ −1, (1.20)
∫ 0

−1
|vα(t, s)|2Vds < ξ ∀ t ∈ [−1, 0] and all s ≤ −1. (1.21)

Proof. Let (W̃ (t), t ≥ 0) be a Lévy process that is an independent copy of W . Denote by W̄ a
Lévy process on the whole real line by

W (t)
⎧⎨
⎩

W (t), t ≥ 0
W̃ (−t), t < 0 (1.22)

and by F̄t the filtration
F̄t = σ (W (s), s ≤ t), t ∈ R.
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First, Let zα be the stationary solution of the equation
dzα = (A − α)zαdt + dW (t).

Since z is assumed to be D((−A)θ) continuous, zα is also D((−A)θ) continuous as zα relates to
z in the following manner,

zα = z(t) + e(A−α)(t−s)(zα − z(s)) − α
∫ t

s
e(A−α)(t−σ )z(σ )dσ, t ≥ s.

Moreover, Let
vα(t, s) = u(t, s) − zα(t), t ≥ s.

Then for any t ≥ s, vα(t) = vα(t, s) is the mild solution of the equation
d
dt vα(t) = Avα(t) + Dx(vα(t) + zα(t)) · (vα(t) + zα(t))t ≥ s,

v(s) = −zα(s).
Taking into account of the a priori estimate (1.19) and the classical estimate

|v|D((−A)1/2) ≥ λ1|v|2

one has
|vα(t, s)|2 ≤ e∫ ts [−λ1+ε+K1|z|44]dσ |vα(s)|2 +

∫ t

s
e∫ tσ [−λ1+ε+K1|z|44]dζ(K2|zα(σ )|4 + 4α2

ε2 |zα(σ )|2)dσ.
It is well known that the Ornstein-Uhlenbeck processes zα has a unique invariant (and Gauss-
ian) measure. So Let µα be the unique invariant measure for zα supported by D((−A) 1+2θ

4 ) ⊂
L4(D), and therefore, by the strong law of large numbers, one has P almost surely that

lims→−∞

∫ t

s
|zα(σ )|44dσ =

∫
V

|z|44µα(dz).
Moreover,

limα→+∞

∫
V

|z|44µα(dz) = 0.
Consequently one can find α > 0 and ε > 0 such that

−λ1 + ε + K1
∫

V
|z|44µα(dz) = −γ < 0. (1.23)

!

Remark. In view of (1.23), the strong law of large number does not apply in our case, as the
stable process does not even possess a finite second moment.
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Claim 2
Assume that z is a continuous and stationary Gaussian process on a separable Banach space
L. Then for arbitrary δ > 0, there exist random variables ξ1 and ξ2 such that P-almost surely,

|z(t)|L ≤ ξ1 + ξ2|t|δ ∀t ≤ 0.
Proof. The proof uses the Chebychev inequality and Borel-Cantelli Lemma; we refer readers
to p.288-289 in [36]. !

The proof of Proposition 15.4.3 is completed once the proofs of Claim 1 and Claim 2 are
established.
To overcome the difficulty demonstrated in the above Remark, we assume finite dimensional
noise, which was inspired by an argument proposed by Flandoli and Crauel [34], who in-
troduced it when studying global random attractors for the RDS generated by a SNSE with
additive noise. Let us present our results on tightness. We consider

du(t) = [−Au(t) − B(u(t), u(t)) + Cu(t) + f ]dt +
m∑
l=1

σleldLl(t) (1.24)

where operators A, B, C are defined in (1.2), f ∈ H , L1, L2 · · · Ll are i.i.d. R-valued symmetric
β-stable processes on a common probability space (Ω,F,P), σ is a bounded sequence of real
numbers and el is the complete orthonormal system of eigenfunction on H .
We work based on the change of variable v = u − z where z(t) = ∑m

l=1 elzl(t) is the solution
to the Ornstein-Uhlenbeck equation

dz + (Â + αI)zdt =
m∑
l=1

σlelLl(t)

and v satisfies
dv+

dt = −νAv(t) − Cv(t) − B(u, u) + f + αz.
A key estimate (which is analogous to (1.19)) is given as the following.

Proposition 3.5.7. Let α > 0, v be a mild solution of (3.187), there exist constants c, c′ > 0
depending only on λ1 such that

1
2
d+

dt |v|2 + 1
2 |v|2V ≤

(
−λ1

4 + 2η
m∑
l=1

|zl|
)

|v|2 + c|f |2 + cα|z|2 + 2η|z|2
m∑
l=1

|zl|. (1.25)
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The proof of Proposition 3.5.7 relies on the following nonlinear estimate, (which was motivated
from Crauel and Flandoli [34]),

⟨B(u, z), u⟩ =
m∑
l=1

⟨B(u, el), u⟩zl ≤ η|u|2
m∑
l=1

|zl|

≤ 2η|v|2
m∑
l=1

|zl| + 2η|z|2
m∑
l=1

|zl|

and the fact z(t) is an ergodic process which is supported by D(Aδ) ⊂ L4(S2).
With the aid of the finite dimensional estimate of a nonlinear term and the ergodic property
of z(t) in Lévy case. We now can use the classical argument in Chapter 15 [36] to deduce
the boundedness of the solution. Moreover, provided the noise does not degenerate (Lemma
4.5.9), the tightness of the probability law in H is established.

Proposition 3.5.8. There exists α > 0 and a random variable ξ such that P-a.s.
|vα(t, s)| ≤ ξ ∀ t ∈ [−1, 0] and all s ≤ −1,

∫ 0

−1
|vα(t, s)|2Vds < ξ ∀ t ∈ [−1, 0] and all s ≤ −1.

Lemma 3.5.9. Assume that X is a stationary process taking values in a Banach space B.
Moreover, assume that for a certain p > 0 we have

E sup
t∈[−1,0]

|X(t)|pB < ∞ .

Then for every κ > 0 such that κp > 1 there exists a random variable ξ such that P a.s.
|X(t)|B ≤ ξ1 + 2κ|t|κ

for all t ≤ 0.

Finally using the Chebyshev inquality we deduce that the family of probability measures lie in
a compact set up to some small ε. Hence the existence of invariant measures is established.

Theorem. Assume additionally, that there exists m > 1 such that σl = 0 for all l ≥ m. Then
the solution u to (3.61) admits at least one invariant measure.

Moreover, we established the measure support in D(Aδ), δ ∈ [0, 1/2].
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Proposition. For any δ ∈ [0, 1
2 ], there exists C = C(δ) such that for any mild solution v(·) of

(3.187), one has

|Aδv(t)|2 ≤ eC ∫ t0 |v(s)|2|A 12 v(s)|2ds|Aδv(0)|2 + C
∫ t

0
eC ∫ tσ |v(s)|2|A 12 v(s)|2ds(|Aδ+ 1

2 f |2 + |z(σ )|2 + |A 1+2δ
4 z(σ )|4)dσ.

(1.26)

1.3.3.1 Contributions
In view of the above, the main contributions of Chapter 4 are

• A new theorem on the existence, uniqueness and continuous dependence on initial data
for a pathwise variational weak solutions to the SNSE on the rotating sphere forced by
cylindrical stable noise. Our results (See Theorems 3.2.11, 3.2.12, 3.2.13, 3.2.14) can be
viewed as a generalisation of the existence and uniqueness results (Theorem 3.2 and
3.3) in Gaussian case in [14];

• Existence and uniqueness of a strong solution to the SNSE on the rotating sphere forced
by cylindrical stable noise; (See Theorem 3.2.16)

• Existence of Invariant Measures to the SNSE on the rotating sphere forced by cylin-
drical stable noise.

1.3.4 Random Dynamical Systems
There are two types of attractors in teh theory of SDE (or SPDE) are worth distinguishable.
One is the measure attractor w.r.t. the Markov semigroup generated by a SDE (SPDE). The
second kind is the so-called random attractors which meant to be understood w.r.t. each
trajectory of the random equation. To our awareness, the notion of measure attractor first
appears in the paper [96], while random attractor were first defined in Crauel and Flandoli
[34, 54]. The two notions of attractors were further unified in the paper [97].
The studies of attractors for random dynamical systems are In Chapter 4, we study the as-
ymptotic behaviour of the functional NSE with force by an additive cylindrical stable noise

du(t) = [−Au(t) − B(u(t), u(t)) + Cu(t) + f ]dt +
m∑
l=1

σleldLl(t), (1.27)

where Ll(t), (1 ≤ l ≤ m) are mutually independent two-sided Lévy processes, u = u(t, x, ω) is
now a random velocity of the fluid, and el (1 ≤ l ≤ m) the corresponding eigenfunctions of the
stokes operator A form an orthonormal basis in H . It is well known that the theory of random
dynamical systems (RDS) permits one to study the qualitative behaviour of stochastic systems
that are driven by many kinds of noise: from white noise, Markov processes, semimartingales
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to non-Markov process or fractional Brownian motion [45]. This motivates us to study the
random dynamical system defined by the SNSE.

1.3.4.1 Concepts of RDS
In section 4.2 we recall several key concepts in the theory of continuous RDS and convert to
the jump case, such as random dynamical systems, double sided filtration. In section 4.2.4 we
recall the concepts of invariant measures in RDS.
The first paper on random attractors is due to Brzezniak and Capinski [19]. The authors
investigate the asymtotic behaviour of a general random dynamical system in a Polish space
X with some certain Borel σ -field. The Random Dynamical System φ : R+ ×Ω×X ∋ (t, ω, x) 12
φ(t, ω)x ∈ X is defined over θ :

φ(t + s, ω)x = φ(t, θsω)φ(s, ω)x ∀ t, s ∈ R+, x ∈ X
P a.s. if and only

φ(t) is strongly measurable for all t ∈ R+, (1.28)

φ(t, ω) : X → X is continuous for all t ∈ R+, P a.s. (1.29)

The trajectories φ(t, ω)x are right-continuous with left limits for every x ∈ X,P a.s.
It turns out here that the above definition of càdlàg RDS can be applied to this thesis (See
Chapter 4.2.1). The difference in our case is that the time set T is chosen to be the whole of
R.
The notion of global attractors has drawn much attention in the theory of infinite dimensional
dynamical systems over the last 50 years. This provides new insights into turbulence, see for
instance Constantin and Foias [31], Constantin, Foias and Temam [30]. The basic framework of
random dynamical systems (RDS) was developed mainly by Crauel, Debussche and Flandoli
[33, 34]. See the monograph Arnold [7] for a comprehensive survey of RDS theory. The
generalisation of this theory to the stochastic case has just been well developed in the last
decade. The notion of a random attractor was first introduced by the earlier mentioned
publication [19] to study random PDE of the form (1.15). It was later generalised to the context
of stochastic PDE by Crauel and Flandoli [34]. The theory of random attractors plays an
important role in the study of asymtotic behaviour of infinite dimensional dynamical systems.
In contrast to the earlier work [19], Crauel and Flandoli [34] developed the basic theory of
global random attractors for random dynamical systems. The random attractor is introduced
as a random invariant set which is the Ω-limit set at time t = 0 of the trajectories “starting in
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bounded sets at time t = −∞”. Symbolically, the random Ω limit set of a bounded set B ⊂ X
at time t is defined as

A(t, ω) = ∪B⊂XA(B, t, ω)
and is called the random attractor. This notion of an attractor applies to RDS generated by
evolution systems perturbed by white noise, in which case the classical notion of an attractor
in deterministic case does not yield meaningful results. In this thesis, we adopt the notion
introduced in Crauel and Flandoli [34] to define the abstract object random attractor, the
existence of which is generated by the following result

Theorem 5.3.9. Let φ be an continuous in space, but càdlàg in time RDS on X and assume
the existence of a compact random set K absorbing every deterministic bounded set B ⊆ H .
Then there exists a random attractor A given by

A(ω) = ⋃
B⊆X,B bounded

ΩB(ω), ω ∈ Ω.

1.3.4.2 Existence of stochastic flow φ
In section 4.3 we study the random dynamics generated by the SNSE, which is the core part of
this chapter. In subsubsection 4.3.1, we construct the probility space for which the coordinate
process Lt(ω, l) = ω(lt) is a two-sided Lévy process of β-stable type, 1 < β < 2. In subsubsection
4.3.2 using property of analytic semigroups, and the fact Lt(ω) = ω̃(t) has stationary increment,
we show the flow ẑ(t) is a.s. well defined. Moreover, using boundedness of noise, we show the
map ẑ is well defined, linear and bounded. In subsection 4.3.3, we prove that the SNSE (1.27)
generates a RDS (see Theorem 4.3.5).
To prove our SNSE indeed defines a RDS, we proceed with three steps.
Step 1 Identify a suitable canonical sample probability space for

du(t) = [−Au(t) − B(u(t), u(t)) + Cu(t) + f ]dt +
m∑
l=1

σleldLl(t).

First, the state space is chosen as E , which is the completion of A−δ(X) with respect to the
image norm

|v|E = |A−δv|X, v ∈ X
where L4(S2) is the space of Lebesgue measurable and fourth integrable vector fields on S2 and
X = L4(S2) ∩ H . The canonical sample space is chosen to be Ω = D(R,E) of càdlàg functions,
that is, functions that are right-continuous with left limits, defined on R and taking values in
E .
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Remark. The space D(R,E) is called the Skorohod space. It cannot be separable under the
commonly used compact-open metric, that is,

ρ(ω1, ω2) :=
∞∑
i=1

1
2i

|ω1(t) − ω2(t)|
1 + |ω1(t) − ω2(t)| , |ω1(t) − ω2(t)|n := sup

−n≤t≤n
|ω1(t) − ω2(t)|

cannot make D(R,E) separable. However, it can be made complete and separable when en-
dowed with Skorohod metric [12] defined as the following

d(l1, l2) =
∞∑
i=1

(1 ∧ d◦
i (l1, l2)) ∀ l1, l2 ∈ D

where li1(t) := gi(t)l1(t) and li2(t) := gi(t)l2(t) with

gi(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1, if |t| ≤ i − 1
i − t, if i − 1 ≤ |t| ≤ i
0, if |t| ≤ i

d◦
i (li1, li2) = infλ∈Λ

(
sup

−i≤s<t≤i
| log λ(t) − λ(s)

t − s | ∨ sup
−i≤t≤i

|l1(t) − l2(λ(t))|
)
,

where Λ denotes the set of strictly increasing, continuous functions λ(t) from R to itself with
λ(0) = 0.
The Borel σ -algebra under this topology is denoted as F. Moreover, for every t ∈ R, a
stochastic process is also a random variable in the following sense,

Lt(ω) : ω → D(R,E) ω → L(t), t ∈ R.

Definition. The probability measure, P in (D(R,E),F) that makes every element in D(R,E)
a sample Lévy path is called the Lévy probability measure. Note, this measure shall not be
confused with the Lévy measure for jumps.
Now define the flow θ = (θt, t ∈ R) on this canonical sample space Ω by the shift

(θtω)(·) = ω(t + ·) − ω(t) t ∈ R, ω ∈ Ω.
The Lévy probability measure P is invariant under this flow, that is,

P(θ−1
t (T)) = P(T)

for all T ∈ F. This flow is an ergodic dynamical system with respect to P. Thus (Ω,F,P, (θ )t∈R)
is a metric DS.
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Step 2 Prove that the Ornstein Uhlenbeck process in the metric dynamical system is also well
defined.

Proposition 4.3.1. Assume that L is a Lévy process taking value in E , such that for any T > 0
∫ T

0
|L(t)|Edt < ∞.

Then the solution of the differential equation
V̇ (t) + αV (t) = L(t), V (0) = 0,

has the form

V (t) =
∫ t

0
e−(t−s)AL(s)ds.

Using the above expression, combine with the integration by part technique from Xu[113], one
can represent the Ornstein Uhlenbeck process in the metric dynamical system as

z(θtω) := ẑ(t) =
∫ t

−∞
Ae−(t−r)A(ω̃(t) − ω̃(r))dr, t ∈ R.

We show ẑ(t) is a well defined element in X := L4(S2) ∩ H by establishing Proposition 4.3.2

Proposition 4.3.2. Assume 0 < δ < 1
β , β ∈ (1, 2), p ∈ (0, β) and

∞∑
l=1

|σl|βλβδl < ∞.

Then
E
∫ t

−∞
|Âe−(t−r)Â(ω̃(t) − ω̃(r))|pXdr < ∞.

Moreover, for P almost every ω̃ ∈ D(R,X), t ∈ R the function

ẑ(t) = ẑ(ω̃)(t) =
∫ t

−∞
Â1+δe−(t−r)Â(ω̃(t) − ω̃(r))dr, t ∈ R.

is well defined and cádlág in X. Furthermore, there exists a constant C depending on β, p,
σ , δ, ω such that

|ẑ(ω̃)(t)| ≤ C(β, p, σ, δ, ω̃)(1 + |t|δ).
The proof is quite involved, we refer readers to 4.3.2.2.
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Theorem 4.3.3. Under the assumption of Proposition 4.3.2, for P-a.e. ω ∈ D(R,X),
ẑ(θsω)(t) = ẑ(ω)(t + s), t, s ∈ R.

Proposition 4.3.4. We define

zα(t) =
∫ t

−∞
e−(t−s)(Â+αI)dL(s)

where the integral is intepreted in the sense of [23] is well defined and is identified as a
solution to the equation

dzα(t) + (Â + αI)zαdt = dL(t), t ∈ R.
The process zα, t ∈ R is a stationary OU process.
Under Proposion 4.3.4, we define

zα(ω) := ẑ(Â + αI ; (Â + αI)−δω) ∈ D(R,X).
It follows from Proposition 4.3.1 that for any t > 0

zα(ω)(t) :=
∫ t

−∞
(Â + αI)1+δe−(t−r)(Â+αI)[(Â + αI)−δω(t) − (Â + αI)−δω(s)]ds = L(t). (1.30)

Moreover, by the fundamental theorem of calculus, one has,
dzα
dt + (Â + αI)

∫ t

−∞
(Â + αI)1+δe−(1−r)(Â+αI)[(Â + αI)−δω(t) − (Â + αI)−δω(r)]dr = ω̇(t).

Therefore zα(t) satisfies
d+

dt zα(t) = (Â + αI)zα = η(t), t ∈ R (1.31)
where η(t) := η(t, x) is the Lévy white noise defined in Chapter 3. Hence Theorem 4.3.3 yields

ẑ(θsω)(t) = ẑ(ω)(t + s), t, s ∈ R ω ∈ D(R,X), t, s ∈ R.
Similar to our definition of Lévy process

Lt(ω) := ω(t), ω ∈ Ω.
The formula (1.30) defines the process zα(t), t ∈ R on the probability space (Ω,F,P), equation
(1.31) suggests zα is a Qrnstein Uhlenbeck process.

Step 3 Prove that (φ, θ ) defines a RDS.
The proof of step 3 is accomplished by checking measurability, continuous dependence on
initial data, and the Cocycle property. The argument follows the same lines as the Wiener
case [18].

30



Theorem 4.3.5. (φ, θ ) is a random dynamical system.

1.3.4.3 Existence of Random Attractors
The last subsection 4.3.4 is devoted to the existence of a random attractor which supports a
markov invariant measures.
Having found a suitable sample probability space which ensures the linear stochastic Stokes
equation remains stationary, in subsection 4.3.4 we prove the existence of random attractors.
Our methodology was inspired by Flandoli and Crauel[34]. In brief, we use the following a
priori estimates for a strong solution (bounded in V , compact in H).

Lemma 4.3.6. Suppose that v is a solution to problem (3.75) on the time interval [a,∞) with
z ∈ L4loc(R,L4(S2)) ∩ L2loc(R,V ′) and α ≥ 0. Then, for any t ≥ τ ≥ a, one has

|v(t)|2 ≤ |v(τ)|2e∫ tτ γ(s)ds +
∫ t

t0
e∫ ts γ(ξ)dξ2p(s)ds, (1.32)

where
p(t) = c|f |2 + cα|z|2 + η|z|2

m∑
k=1

|zk(t)|, (1.33)

γ(t) = −λ1
2 + 4β

m∑
k=1

|zk(t)| (1.34)

for all t0 ≤ τ ≤ t and c depends only on λ1.

Using this result, we prove, respectively the existence of an absorbing balls in H at t = −1
(Lemma 4.3.9) and in V at t = 0 (Lemma 4.3.10). Then with the use of the compact embedding
of Sobolev spaces, we identified a compact absorbing set and consequently deduce the existence
of a random attractor.
Finally, it follows from the following corollary 4.4 Flandoli and Crauel [34],

Corollary. If a càdlàg time and space continuous RDS φ has an invariant compact random
set, then there exists a feller invariant probability measure µ for φ.

that the random attractor supports a random invariant measure.
In relation to the literature of random attractors, on the one hand our study generalises to the
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case of Lévy noise, several earlier results on random attractors in the case of Gaussian noise
[15, 21, 34]. It also generalises to the case of 2D sphere with rotation, the results [21, 34] for
the case of bounded or unbounded domain in R2.

1.3.4.4 Contributions
In view of the above, the main contributions of Chapter 5 are:

• Construction of a new canonical sample space for the SNSE with Lévy noise;
• A new regularity result on the dynamics of the driving noise (Proposition 5.3.2);
• Existence of a RDS φ (Theorem 5.3.5);
• Existence of a random attractor (See section 5.3.4);
• Existence of a Feller Markov Invariant Measure (See section 5.3.5).
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CHAPTER 2

Subordinated H-cylindrical Wiener processes and Stochastic
Integration

Summary
In this chapter, we start with a review of probability and analytic facts. Then we introduce the
concept of infinite divisibility of probability distribution and random variables which underpins
the whole subject of Lévy Processes. The Lévy Itô decomposition describes the structure of
their sample paths while the Lévy Khintchine formula prepares one to study distributional
properties of Lévy process. Lévy processes are introduced in Section 2.3. In particular we re-
visit the concepts of real-valued Wiener process, then the Hilbert space-valued Wiener process
and and the cylindrical Wiener process. The notion of Reproducing Kernel Hilbert Space is
introduced as well. Finally, the Hilbert space valued (or H- valued) Lévy process and Lp-valued
Lévy process are defined. In section 2.4 we review stochastic integration in Hilbert space. In
particular, we present a version of the stochastic Fubini theorem for general Lévy process
which seems to be new. Section 2.5 introduces concepts of subordinators and subordinated
processes that are naturally defined via convolution semigroups of probability measures. In the
final subsubsection, we define cylindrical stable process as a subordinated cylindrical Wiener
process.

2.1 Preliminaries
In this section we review some basic probabilistic and analytic tools to aid the core discussion
in Chapter 3 and 4.

2.1.1 Probabilistic preliminaries
In this section we recall some basic facts from probability theory in the context of random
dynamical systems. The discussion follows closely to the material in [32, 37, 95].
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Let E be a non-empty set and E a collection of subsets of E . We call E a σ -algebra if the
following hold

• E ∈ E.
• A ∈ E B Ac ∈ E
• An ∈ E B ∪n

n=1An ∈ E.
The pair (E,E) is called a measurable space. A measure on (E,E) is a mapping µ : E → [0,∞]
that satisfies

• µ(∅) = 0,
•

µ
( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

for every sequence (An, n ∈ N) of mutually disjoint sets in E.
The triple (E,E,µ) is called a measure space. We will frequently use the notation E = Ω
and will interpret Ω as the set of outcomes of some random experiments. Elements of E are
called events and any measure on (Ω,E) of total mass 1 is called a probability measure will
be denoted as P.
Le E be a Polish space. The Borel σ -algebra of E is the smallest σ -algebra containing all
closed (or open) subsets of E and it is denoted as B(E). A function Y : (Ω,F) → (E,E) is said
to be F-measurable if for any set B ∈ E

Y−1(B) = {ω : Y (ω) ∈ B} = {Y ∈ B} ∈ F
So, any E-valued r.v. Y is a measurable function Y : (Ω,F) → (E,E). Now, Let I ⊂ R+ be some
set of indices, then an E-valued stochastic process is a family {Y (t)}t∈I of random variables on
a probability space (Ω,F,P). A collection of probabilities {P(Y ∈ B); B ∈ B(E)} is called the
probability law, denoted as L(Y ).
Let I be a time interval. In general, I can be taken as the set of non-negative real number
R+, or a finite interval [0,T] or, in the discrete-time case, a subset of non-negative integers
Z+ = {0, 1, · · · }. On I we consider the Borel σ -field B(I). Any family Y = (Y (t), t ∈ I) of
random variables in E is called a stochastic process in E or E-valued stochastic process.
There are several form of continuity one shall keep in mind. We say that X is continuous
(respectively càdlàg) if for P-a.e. ω ∈ Ω, the sample-paths t 12 Y (t, ω) ∈ E of Y are continuous.
X is said to be càdlàg if X is right-continuous with left limits (RCLL). That is, for every t ∈ I ,
the limit lims∈I,s↑t X(s) = X(t−) exists.
Let (Ω,F,P) be a probability space. A filtration is any non-decreasing family of σ -fields, that
is, Fs ⊆ Ft for any 0 ≤ s ≤ t ≤ T . Ft ⊂ F, t ∈ I. The filtration (Ft)t≥0 is abbreviated as F.
A probability space is said to be filtered if it is equipped with a filtration F. A filtration (Ft) is
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said to be right-continuous if
Ft = Ft+ = ∧

s>t
Fs

We will use standard notation
Ft− = ∨

s<t
Fs

This is the σ -field of events strictly prior to time t . The quadruple (Ω,F, (Ft≥0),P) is called
a filtered probability space. We say that an E-valued stochastic process Y is adapted to the
filtration (Ft) if, for every t ∈ I , Y (t) is Ft-measurable.
The Dirac measure on E for a given x ∈ E will be denoted by δx and is defined by δx(A) =
1A(x), for any A ⊆ E .
Let Pr(E) be the space of all Borel probability measures on E endowed with the topology of
weak convergence of measures.
The notion of tightness plays an important role in this thesis. Denote Pr(E) as the set of
probability measures on E . Recall, a set G ⊂ Pr(E) is said to be tight if for every ε > 0 there
exists compact set Kε ⊂ E such that µ(Kε) > 1 − ε for all µ ∈ G (This is also called “uniformly
tight”).
The Prohorov’s Theorem gives a criterion for a sequence probability distribution to possess a
weakly convergent subsequence.

Theorem 2.1.1. Let E be a Polish space and Let G be a subset of Pr(E). Then Ḡ is compact1

in Pr(X) if and only if G is tight.

Proof. See Parthasarathy [85]. !

Definition 2.1.2 (Modification). Let X := (Xt)t≥0 and Y := (Yt)t≥0 be two E-valued stochastic
processes defined on the same probability space. We say that X is a modification of Y if
P({Xt = Yt}) = 1 for all t ≥ 0.
In what follows we will need a convolution of two probability measures defined as

(µ1 ∗ µ2)(A) =
∫

E
µ1(A − x)µ2(dx)

for each A ∈ B(E), where A − x = {y − x, y ∈ A}. Denote by ν∗n = ν ∗ · · · ⋆ ν (n-times) with
ν⋆0 = δ0.

1That is, for any {un} ⊂ G , there is a weakly convergent subsequence.
35



2.1.1.1 Random Probability Measures
Let us quote some standard facts from measure theory. The discussion in this subsection
follows closely the book [32].
Let X be a Polish space with a metric d. The σ -field of Borel sets of X is denoted by B. The
product space X × Ω is understood as a measurable space with the product σ -field B ⊗ F,
which is the smallest σ -field on Ω × X with respect to which both the canonical projection
πX : Ω × X → X and πΩ : Ω × X → Ω are measurable.

Definition 2.1.3 (Random Probability Measure). A map
µ : B × Ω → [0, 1],

(B, ω) 12 µω(B)
satisfying

(i) for every B ∈ B, ω 12 µω(B) is measurable,
(ii) for P-almost every ω ∈ Ω, B 12 µω(B) is a Borel probability measure on X.

is said to be a random probability measure on X, and is denoted by ω 12 µω .
Random probability meausre are also called transition probabilities or Markov kernels. Let
µ·(·) be a transition probability from Ω to X, i.e., µω is a Borel probability measure on X and
ω 12 µω(B) is measurable for every Borel set B ⊂ X. Denote by PrΩ(X) the set of transition
probabilities with µ· and ν· identified if P(ω : µω ̸=: νω) = 0.
Let us now consider the space of all probability measures on (Ω × X,B × F) with marginal
πΩµ = P on Ω. The following proposition about disintegration relates random measure ω 12 µω
with its associated marginal P measure on the product space Ω × X.

Proposition 2.1.4 (Existence and Uniqueness of a Disintegration, p.19[32]). For every prob-
ability measure µ on Ω × X with πΩµ = P there exists a random measure ω 12 µω such
that ∫

Ω×X
h(ω, x)dµ(ω, x) =

∫
X

∫
Ω
h(ω, x)dP(ω)dµω(x)

for every bounded measurable h : Ω×X → R. The random measure ω 12 µω is unique P-a.s..
The two random measures ω 12 µω and ω 12 νω coincide if µω = νω for P almost all ω. Put

PrΩ(X) = {µ : B × Ω → [0, 1] : ω 12 µω random measure}
with two random measures identified if they coincide P-a.s., and

PrP(Ω × X) = {µ ∈ Pr(Ω × X) : πΩµ = P}.
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In view of the above Proposition 2.1.4, suppose µ is a probability measure on Ω × X with
marginal P on Ω. Then for any µ ∈ PrP(Ω × X) there is a disintegration µ· ∈ PrΩ(X) uniquely
determined by

µ(B × F ) =
∫

F
µω(B)dP(ω)

for all B ∈ B and F ∈ F. With this one can identify probability measures on Ω × X with
marginal P with their disintegration ω 12 µω.

Definition 2.1.5. A probability measure µ on Ω×X with marginal P on Ω is said to be supported
by a measurable random set ω 12 A(ω), if µ(A) = 1, where A = {(ω, x) : x ∈ A(ω)} is the graph
of the mapping ω 12 A(ω). Equivalently, µω(A(ω)) = 1 P-a.s..
Denote by CΩ(X) the set of function f : X×Ω → R such that f (·, x) is measurable for each x ∈ X,
f (ω, ·) is continuous and bounded for each ω ∈ Ω, and ω 12 sup{|f (ω, x)| : x ∈ X} is integrable
w.r.t. P, where two such functions f and g are identified if P({ω : f (ω, ·) ̸= g(ω, ·)}) = 0
(measurable by continuity of f and g together with separability of X). Define the narrow
topology on PrΩ(X) to be the coarest topology such that

µ 12
∫

Ω×X
f (ω, x)dµ(ω, x) = µ(f )

is continuous for all f ∈ CΩ(X). The skew product flow {Θt}t∈T acts as a flow of continuous
transformations on PrΩ(X).
A generalisation of the Prohorov theorem for random measures is the following.

Definition 2.1.6 (Tightness for random measures). A subset Γ of PrΩ(X) is said to be tight, if
for every ε > 0 there exists a compact set Cε ⊂ X such that (πXγ)(Cε) ≥ 1 − ε for every γ ∈ Γ,
where πXγ : X × Ω → X is the canonical projection (see p.31 [32]).

Theorem 2.1.7 ([108]). Suppose Γ ⊂ PrΩ(X) is tight. Then
• Γ is relatively compact in PrΩ(X).
• Γ is relatively sequentially compact (i.e. if {µn· }n∈N is a sequence in Γ, then there

exists a convergent subsequence {µnk· }k∈N)

2.1.1.2 Skorohod space and Skorohod metric
In this subsection we recall some basic terminology on Skorohod space and Skorohod metric
given in section 12 of the book [12].
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Let E be a separable Banach space with the norm | · |. Let us denote by D(R,E) the space of all
functions defined on R with values in E that are right continuous and have left limits (càdlàg
paths). Let Λ denote the class of strictly increasing, continuous mappings λ(t) of R into itself
with λ(0) = 0. One introduces a topology on D(R,E) by defining the Skorokhod metric as

d(f , g ) =
∞∑
i=1

1
2i (1 ∧ d◦

i (f , g ))

where
d◦
i (f , g ) := infλ∈Λ

{
sup

−i≤s<t≤i

∣∣∣∣log λ(t) − λ(s)
t − s

∣∣∣∣ ∨ sup
−i≤<t≤i

|f (t) − g(λ(t))|
}

The space D((−∞,∞),E) endowed with the metric d is complete and separable.

2.1.2 Analytic preliminary
In this subsection we recall some basic facts in the theory of analytic semigroup.

2.1.2.1 Semigroups and analytic Semigroups
Let X be a Banach space. The space of bounded linear operators is denoted as L(X). A family
of operators S(t) ∈ L(X) with t > 0 is a one-parameter semigroup if S(t1 + t2) = S(t1)S(t2) for
t1, t2 > 0 and S(0) = I . Moreover, if

t 12 S(t)x
is continuous for every x, then (S(t))t≥0 is said to be strongly continuous or shortly a C0-
semigroup. In particular, every A ∈ L(X) generates a strongly continuous semigroup S(t) =
e−tA where e−tA := I − tA+ 1

2t2A2 − · · · . In general, the infinitesimal generator of a semigroup
(S(t))t≥0 is defined as the operator

Ax := limt↓0
S(t)x − x

t
whose domain D(A) is defined as

D(A) :=
{
x ∈ X : limt↓0

(S(t) − I)x
t exists

}

The resovent set of A is the set ρ(A) consisting of all λ ∈ C for which there exists a unique
bounded linear operator R(λ,A) on X such that

• R(λ,A)(λI − A)x = x for all x ∈ D(A);
• R(λ,A)x ∈ D(A) and (λI − A)R(λ,A)x = x for all x ∈ X
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Explicitly, the resolvent set of A is defined as
ρ(A) := {λ ∈ C; λI − A : D(A) → X bijective, (λI − A)−1 ∈ L(X)}

The operator R(λ,A) := (λI − A)−1 is called the resolvent of A at λ, and the mapping
R(λ,A) : ρ(A) → L(X)

is called the resolvent of A at λ, and the mapping
R(·,A) : ρ(A) → L(X)

is called the resolvent of A. The set
σ (A) := C \ρ(A)

is said to be the spectrum of A.
For σ ∈ (0, π] we define the open sector

Σσ = {z ∈ C \{0} : |arg(z)| < σ}
where the argument is taken in (−π, π]. A C0 semigroup (S(t), t ≥ 0) is called analytic on Σσ
if

• S extends to an analytic function S : Σσ → L(X);
• S(z1 + z2) = S(z1)S(z2) for z1, z2 ∈ Σσ ;
• limz→0;z∈Σσ S(z)x = x for all x ∈ X.

An equivalent definition in [87] is the following

Definition 2.1.8. A C0-semigroup on a Banach space X is analytic if, for every t > 0, S(t)(X) ⊂
D(A) and supt∈(0,1] |tAS(t)|L(X,X) < ∞

2.1.2.2 Fractional powers of operators

To study the regularity properties of solutions to equations with a linear part A, that is, the
generator of an analytic semigroup S on a Banach space X, it is convenient to introduce the
concept of fractional power of A. Roughly speaking, for any infinitesimal generator where its
spectrum does not contain zero and does not surround it, Aα is defined by a Cauchy integral
along a contour around the spectrum does not containing 0.
Assume that there exists ε > 0 and 0 < M < ∞ such that

|(λI − A)−1|L(X) ≤ M
ε + λ , ∀ λ > 0 (2.1)
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Then we can define a semigroup S(·) of bounded linear operator in X by setting S(0) = I and
S(t) = 1

2πi
∫

C
eλR(λ,A)dλ, t > 0

For any γ > 0, the bounded linear operator A−γ is defined by
A−γ := 1

2πi
∫

C
λ−γR(λ,A)dλ

where C is a piecewise smooth path in ρ(A) from ∞e−iθ to ∞eiθ for some θ > 0. The integral
above converges in the uniform operator topology for every γ > 0 and thus defines a bounded
linear operator A−γ. For 0 < γ < 1 one can deform the path of integration C into the upper
and lower sides of the negative real axis and obtain

A−γ = 1 − e−2πiγ

2πi
∫ ∞

0
λ−γ(λI − A)−1dλ

One can check that A−γ is injective for every γ > 0 (See Nigel [46], Prop 5.30). We are now
ready to define the fractional power of A.

Definition 2.1.9. Let γ > 0. Then the operator Aγ defined as the inverse of A−γ with domain
D(Aγ) = ran(A−γ) is called the γ-power of A.
Let U , H and K be three real separable Hilbert spaces. We denote by L(U,H) the space of all
bounded linear operators from U to H .

Definition 2.1.10. A Linear operator R ∈ L(U,H) is called Hilbert-Schmidt if
∑
k

|Rek|2H < ∞

for any (or equivalently for a certain) orthonormal basis {ek} in U .
It is often convenient to introduce the concept of so-called γ-radonifying operators. To do this,
fix an orthonormal basis {ej} of some Hilbert space K. Let {σj} be a sequence of independent
standard Gaussian distributed real-valued random variables defined on a probability space
(Ω,F,P).

Definition 2.1.11. A bounded linear operator Ψ : K → X is called γ-radonifying if the series∑∞
j=1 σjΨej converges in L2(Ω,F,P; X)

Finally, in the following we recall some well known probabilistic and analytic facts from the
seminal paper [14]. Let H and E be respectively real separable Hilbert and Banach spaces.
Let {ek} be a fixed orthonormal basis of H . Let B0(K) denotes the class of all subsets U of K
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having the form
U = {v ∈ K : (⟨v, h1⟩, · · · , ⟨v, hn⟩) ∈ U0}

for a certain n, an orthonormal system h1, · · · , hn in K, and U0 ∈ B(Rn). Let γK be a standard
cylindrical Gaussian measure on a real separable Hilbert space K. 2 A bounded linear operator
U : K ↪2 X is γ-radonifying iff the image U(γK) of the canonical Gaussian distribution γK on K
extends to a Borel (Gaussian) Probability measure on X which will be denoted by νU = γK◦U−1.
Set

R(K,X) := {U : K → X such that U is γ radonifying}
By the Fernique theorem (which asserts that for any U ∈ R(K,X) there exists a c > 0 such
that ∫X ec|x|2νU (dx) < ∞ ) , one can equip the space R(K,X) with the norm

|U|R(K,X) :=
(∫

X
|x|2XνK(dx)

)1/2
.

Let S2 be the 2D unit sphere. We denote ∫S2 fdS the integration with respect to the surface
measure dS = sin θdθdφ.
Let B : H → H be a selfadjoint operator with the complete orthonormal system of eigenfunc-
tions (el) ⊂ Lp(S2) and the corresponding set of eigenvalues (λl). It follows from from Theorem
2.3 [22] that if further B has compact inverse B−1 then the operator U−s : H → Lp(S2) is well
defined and γ-radonifying iff

∫
S2

(∑
l
λ−2s
l |el(x)|2

)p/2
dS(x) < ∞ (2.2)

2.2 Basic properties: Infinite divisibility
Let µ∗n denotes the n-fold convolution of probability measure µ with itself. A probability
measure µ on a separable Hilbert space H is called infinitely divisible if for every n ≥ 1 there
exists a probability measure µn such that µ = µ∗nn .
Every infinitely divisible distribution can be uniquely determined in term of characteristic
function. Let µ be an infinitely divisible distribution on H . Then, its characteristic function µ̂
is given for every x ∈ H by

µ̂(x) = exp
{
i(x, b) − 1

2(x,Qx) +
∫

H
(ei(x,y) − 1 − i(x, y)χ|y|≤1(y))ν(dy)

}
, (2.3)

2That is, γ(U) = (2π)−n/2 ∫
U0 exp(−|x|2/2)dx for U .
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where b ∈ H , Q is a nonnegative trace class operator on H and ν is a measure concentrated
on H \ {0} satisfying the condition ∫

H
(|y|2 ∧ 1)ν(dy) < ∞.

Moreover, the Lévy triplet (b,Q, ν) is uniquely determined by the measure µ. Conversely, every
Lévy triplet (b,Q, ν) uniquely determines an infinitely divisible distribution with characteristic
function (2.3). This result leads to the Lévy Khintchine representation or Lévy Khintchine
formula which we will state in section 2.2.1.
Let Ω,F,P) be a probability space. We say that a random variable X : Ω → H is infinitely
divisible if, for every n ∈ N, there exist i.i.d. H-valued random variables Y (n)

1 , · · · ,Y (n)n such
that

X d= Y (n)
1 + · · · + Y (n)

n .

2.2.1 Lévy Khintchine formula

We have the following Lévy Khintchine formula [87]

Theorem 2.2.1 (Lévy Khintchine). Given b ∈ H, Q ∈ L+1 (H) and a non-negative measure ν
concentrated on H\{0} satisfying ∫

H
(|y|2H ∧ 1)ν(dy) < ∞, (2.4)

there exists a convolution semigroup (µt) of measures on H such that
e−tψ(x) =

∫
H
ei⟨x,y⟩H µt(dy), (2.5)

where
ψ(x) = −i⟨b, x⟩H + 1

2⟨Qx, x⟩H +
∫

H
(1 − ei⟨x,y⟩H + χ{|y|H<1}(y)i⟨x, y⟩H )ν(dy). (2.6)

(b) Conversely, for each convolution semigroup (µt) of measures, there exists b ∈ H , Q ∈
L+1 (H) and a non-negative measure ν concentrated on H\{0} satisfy (2.4) in such a way that
(2.5) holds with ψ defined by (2.6).
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2.3 Lévy Process
In this Section, our aim is to present some basic facts in the theory of H-valued Lévy process.
The presented material follows closely to the books [38, 87]. Let (Ω,F, (Ft) ,P) is a given
filtered probability space and all stochastic processes are defined on this space.

2.3.1 Wiener process
A real-valued (Ft)-adapted stochastic process (W (t), t ≥ 0) is said to be a Wiener process if

(i) W has continuous trajectories with W (0) = 0,
(ii) W has independent increments and

L(W (t) − W (s)) = N(0, t − s), t ≥ s ≥ 0,
where N (m,σ2) stands for the Gaussian distribution with mean m and variance σ2. Equiva-
lently, a real valued stochastic process (W (t)) with continuous trajectories is called a Wiener
process if it is Gaussian and there exists σ ≥ 0 such that

E(W (t)) = 0, E(W (t)W (s)) = σ2(t ∧ s).

2.3.2 Hilbert space valued Wiener process and cylindrical Wiener pro-
cess

Let H be a real separable Hilbert space with inner product (·, ·). An H-valued, (Ft)-adapted
Wiener process is such a process that for every x ∈ H with |x| = 1, a real-valued process
(W (t), x), t ≥ 0, is an (Ft)-adapted Wiener process. This implies in particular that the law
L(W (t)) of W (t), is a Gaussian measure with mean vector 0 and, for arbitrary x, y ∈ H ,
t, s ≥ 0,

E[(W (t), x)(W (s), y)] = (t ∧ s)E[(W (1), x)(W (1), y)] = (t ∧ s)(Qx, y) ,
where Q is the covariance operator of the Gaussian measure L(W (1)). The operator Q is
a symmetric trace class and positive, that is, for any orthonormal basis {ej : j ≥ 1} of H the
operator Q has the property

Tr Q =
∞∑
j=1

(Qej, ej) < ∞,

and (Qx, x) ≥ 0 for any x ∈ H . The Wiener process defined this way is sometimes called a
Q-Wiener process to emphasise its dependence on the covariance operator Q.
Finally, we will define a cylindrical Wiener that intuitively corresponds to the case Q = I .
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More precisely, by an (Ft)-adapted cylindrical Wiener process on H we mean a mapping
W : [0,∞] × H 12 L2(Ω,F,P) satisfying the following conditions.

• for every t ≥ 0 and x ∈ H the random variable W (t, x) is Ft-measurable,
• for every t ≥ 0 the mapping H ∋ x 12 W (t, x) ∈ L2(Ω,F,P) is linear,
• for all t ≥ 0, and x, y ∈ H , E|W (t, x)|2 = t|x|2H ,
• for each x ∈ H with |x| = 1, W (t, x), t ≥ 0 is a real valued Wiener process.

Lemma 2.3.1. If W is a cylindrical Wiener process then, for all t ≥ s ≥ 0 and x, y ∈ H ,
EW (t, x)W (s, y) = (t ∧ s)⟨x, y⟩H .

2.3.3 Reproducing Kernel Hilbert Space
Let us now present some additional facts about reproducing Hilbert spaces and Banach space-
valued Wiener processes. We will follow the paper [16].
Suppose that U is a separable Banach space with the dual space U⋆. For x ∈ U and x⋆ ∈ U⋆

we denote by (x, x⋆)U,U⋆ the canonical duality. A U-valued Wiener process W is defined as
an adapted, Gaussian and continuous process, such that W (0) = 0, and such that for every
x⋆ ∈ U⋆ with |x|U⋆ = 1 the real valued process (W (t), x⋆)U,U⋆ is a Wiener process. Replacing
if necessary U by its closed subspace we can assume that U is precisely the support of the
law L(W (1)). Then, there exists a unique separable Hilbert space H densely and continuously
embedded into U such that

E(W (t), x⋆)U,U∗(W (s), y⋆)U,U∗ = (t ∧ s)⟨x⋆, y⋆⟩H for t, s ≥ 0, x⋆, y⋆ ∈ U∗,
where we identify H∗ with H, and then U∗ with properly chosen subspace of H. Hence, since
U∗ is dense in H, for any t ≥ 0 the mapping

U∗ ∋ x 12 (W (t), x)U,U∗ ∈ L2(Ω,F,P),
has the unique continuous extension to H. Let us denote this extension also by W (t). Note
that W is a cylindrical Wiener process on H. The space H is called the reproducing kernel
Hilbert space, shortly RKHS.
Now let U be a Hilbert space such that the embedding H ↪2 U is dense and Hilbert Schmidt.
We identify U∗ with a subspace of H and denote also by ⟨·, ·⟩ be the bilinear form on U∗ × U.
Recall that ⟨x, y⟩ = (x, y)H for x ∈ U∗ and y ∈ H.

Theorem 2.3.2. Let U be a Hilbert space such that the embedding H ↪2 U is dense and
Hilbert Schmidt. Then the following holds.
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(i) If W is a cylindrical Wiener process on H then there exists a U-valued Q-Wiener
process WQ such that

⟨x,WQ(t)⟩ = W (t, x), t ≥ 0, x ∈ U∗. (2.7)
Moreover, the RKHS of WQ is equal to H.

• Conversely, if W is a Wiener process in U with RKHS equal to H then (2.7) defines
a cylindrical Wiener process on H.

Let H be real separable Hilbert space, let (ek) be an orthonormal basis of H, and let (βk) be a
system of independent Gaussian real-valued random variables defined on a probability space
(Ω,F,P).
Let U be a real Banach space. A bounded linear operator K : H → U is said to be γ-radonifying,
or simply radonifying, iff the series ∑k βkKek converges in L2(Ω,F,P; U).
The set of all γ-radonifying operators from H into U is denoted by R(H,U). Note that if
K ∈ R(H,U) then∑k βkKek is a 0-mean Gaussian U-valued random variable, and consequently
Fernique’s theorem yields that

|K|R(H,U)
def=
(
E|∑

k
βkKek|2U

)1/2
=
(∫

U
|e|2UγK(de)

)1/2
< ∞,

where γK denotes the law of the U-valued random vector ∑k βkKek. It is obvious that for any
K ∈ R(H,U), |K|R(H,U) does not depend on the choice (ek) and (βk). Moreover, | · |R(H,U) is a
norm, and (R(H,U), | · |R(H,U)) is a separable Banach space. See [8]
Assume that U is a separable Hilbert space. Recall that a bounded linear operator K from H
into U is called Hilbert-Schmidt iff

|K|LHS(H,U)
def=
( ∞∑

k=1
|Kek|2U

)1/2
< ∞,

for any orthonormal basis (ek) of H. Let us denote by LHS(H,U) the class of all Hilbert-Schmidt
operators from H into U . We remark that R(H,U) = LHS(H,U) and | · |R(H,U) = | · |LHS(H,U) [16].
Assume that W is a cylindrical Wiener process on H. Let (ek) be an orthonormal basis of H.
Let Wk(t) = W (t, ek). Then (Wk) is a sequence of independent standard real valued Wiener
process. Let U be a Hilbert space such that the embedding H ↪2 U is Hilbert Schmidt. Then

W (t) = ∑
k

Wk(t)ek t ≥ 0,

is well defined since the series converges in L2(Ω,F,P,U). Clearly, W is a Wiener process on
U with the RKHS H, and W is independent on the choice of ek.
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2.3.4 Hilbert space valued Lévy processes
Definition 2.3.3 (Lévy process). An H-valued Lévy process is a stochastic process X = {X(t), t ∈
[0,∞)} such that

• X(0) = 0 a.s. and X is stochastically continuous: ∀ ε > 0,
limt↓0 P(|X(t)| > ε) = 0.

• X has independent increments, that is, ∀ 0 ≤ t0 < t1 < · · · < tn, the random vectors
X(t0),X(t1) − X(t0),X(t2) − X(t1), · · · ,X(tn) − X(tn−1) are independent,

• X has stationary increments:
Xt+s − Xt

d= Xs ∀ s, t ≥ 0,
• t 12 X(t) is càdlàg a.s. .

Note, that without the assumption of stationary increments, we have an additive process. We
will need also a two-sided Lévy process defined as follows. Let X1 and X2 be two independent
Lévy processes defined on the same probability space and with the same distribution. Then
we define the two-sided Lévy process

X(t) =
{

X1(t) if t ≥ 0
X2(t) if t < 0 t ∈ R .

For a two-sided Lévy process we will consider the filtration Ft = σ (X(s) : s ≤ t) for all t ∈ R.

2.3.5 Lévy Khintchine decomposition
A key result in the theory of Hilbert space-valued Lévy processes is the celebrated Lévy-
Itô decomposition, in which the sample paths of a given Lévy process are decomposed into
continuous and discontinuous parts. More precisely, let L = (L(t), t ≥ 0) be an H-valued Lévy
process. The jump at time t is ∆L(t) = L(t) − L(t−). For a Borel set Γ ∈ B(H \{0}) we define
a Poisson random measure

πΓ(t) := ∑
0≤s≤t

1Γ(∆L(s)), t ≥ 0

Note that the definition of Lévy process L implies that πΓ is a Z+-valued Lévy process with
jump size 1. Moreover, because L has càdlàg paths there are only finitely many jumps of
size larger than a positive constant and thus there are only finitely many in the set Γ. So,
(πΓ, t ≥ 0) is a Possion process with EπΓ(t) = tEπΓ(1) = tν(Γ). The measure ν is the so-called
Lévy measure which is finite on sets separated from 0. For any Borel set Γ ⊂ H \ {0}, we
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define
LΓ(t) = ∑

s≤t
1Γ(∆L(s))∆L(t) .

Shortly we will introduce the concept of Poisson random measure on an arbitrary measurable
space (H,H) with certain intensity measure. The so-called compensated Poisson random
measure is defined by

π̃Γ(t) := πΓ(t) − tν(Γ),
for every Γ ∈ B(H \{0}) Finally, we present the following version of Lévy-Khinchin decom-
position introduced in [87] which decompose every Lévy process into drift, Brownian, small
jump and large jump parts. For he proof see Theorem 4.7 [87] or Theorem 4.1 in [4].

Theorem 2.3.4. If L = (L(t), t ≥ 0) is a H-valued Lévy process, then the corresponding jump
intensity ν satisfies ∫

H
(|y|2H ∧ 1)ν(dy) < ∞.

Moreover, every Lévy process has the following represtations:

L(t) = bt + W (t) +
∞∑
k=1

(
LΓk (t) − t

∫
Γk
yν(dy)

)
+ LΓ0 (t),

where Γ0 := {x : |x|H ≥ r0}, for k ≥ 1, Γk := {x : rk ≤ |x|H < rk−1}, (rk) is an arbitrary
sequence decreasing to 0, W is a Wiener process. Moreover, all members of the representa-
tion are independent processes and the series converges P a.s. uniformly on each bounded
subinterval [0,∞).

The cylindrical Lévy Noise used in this thesis is obtained by subordinating a cylindrical Wiener
process by an arbitrary real valued, increasing Lévy process. This increasing Lévy process is
chosen to be a β

2 stable (symmetric) process, with β ∈ (0, 2). Let us recall some basic facts from
[94]. First, recall that a real random variable X is said to be β-stable with the, scale parameter
σ , skewness parameter δ, and shift parameter ν, shortly X ∼ Sβ (σ, δ, ν), if

EeiθX = eiθν−|σθ|β (1−iδc sgn(θ)) ,
where

c =
{ ((σθ)1−β − 1) tan πβ

2 if β ̸= 1
− 2

π log |σθ| if β = 1
Note that in particular, S2(σ, 0, ν) = N(ν, 2σ2) is Gaussian.
We have also the following definition.
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Definition 2.3.5. A real valued r.v. X is said to be symmetric β-stable, 0 < β ≤ 2, if X ∼
Sβ(σ, 0, 0) or, explicitly

EeiθX = e−σβ |θ|β/2, θ ∈ R. (2.8)
The name “β-stable” means that if X1, · · · ,Xm are independent and β-stable, then ∑j≤m αjXj is
β-stable, and

σ (∑
j≤m

αjXj) =
⎛
⎝∑

j≤m
|αj |βσ (Xj)p

⎞
⎠

1/β

,

which is obvious from (2.8).

Definition 2.3.6. A random vector X = (X1, · · · ,XN ) with values in RN is β-stable if each linear
combination ∑N

i=1 αiXi is a real β-stable variable.
A random process X = (Xt , t ∈ I) indexed by I is called β-stable if for every t1, · · · , tN in T ,
(Xt1 , · · · ,XtN ) is a β-stable random vector. (p.131 in [70], p.233 in [101])
A natural generalisation of the Rn definition of stable Lévy motion (see for instance p.113 [94])
to the Hilbert space is the following

Lemma 2.3.7. A Lévy process {X(t), t ≥ 0} on a Hilbert space is a β-stable Lévy motion if
and only if X(t) − X(s) ∼ Sβ((t − s)1/β, δ, 0) for some 0 < β ≤ 2, −1 ≤ δ ≤ 1, 0 < σ < ∞.

2.3.6 Poisson process and Poisson random measure
A Lévy process with values Z+ = {0, 1, · · · },, which is increasing with jumps of size 1, is said
to be a Poisson process. One constructs a Poisson process using exponentially distributed
random variables, see chapter 4 in [87].
For all t > 0 and Γ ∈ B(H\{0}) with 0 ̸∈ Γ̄, we define the Poisson random measure corre-
sponding to L by the formula

π([0, t],Γ) := πΓ(t)
The process

π̃([0, t],Γ) := π([0, t],Γ) − tν(Γ), t ≥ 0,Γ ∈ B(H\{0})
is called the compensated Poisson random measure.
Let us now define Poisson random measure on general measure space.
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Let
Z+ = Z+ ∪ {+∞} = {0, 1, 2, · · · } ∪ {+∞}

Let (Θ,B, ρ) be a σ -finite measure space. A family of Z+-valued r.v. {π(Γ) : Γ ∈ B} is called a
Poisson random measure on Ω with intensity measure ρ, if

• For any measurable set Γ, the random variable π(Γ) ∼ Poisson(ρ(Γ)),
• If Γ1 ∩ Γ2 ∩ · · · ∩ Γn = ∅, then π(Γ1), · · ·π(Γn) are independent,
• For every ω, π(·, ω) is a measure on H \ {0}.

2.4 Poisson random measure and stochastic integration
In this section, we first recall some facts from the theory of Poisson stochastic integration(see
[89]). Then we introduce a weaker concept of measurability and present a new version of
stochastic Fubini theorem.

Definition 2.4.1. Let {τi}i≥1 be a sequence of independent exponential random variables3 with
parameter λ and Tn = ∑n

k=1 τk. The process (Nt , t ≥ 0) defined by
Nt = ∑

n≥1
1t≥Tn

is called a Poisson process with intensity λ.
Now Let ξi be a sequence of i.i.d. random variables. The process

Y (t) = I{Nt≥1}
Nt∑
i=1

ξi

is said to be a compound Poisson process. The trajectory of a compound Poisson process
is a piecewise continuous function with discontinuities (jumps) at random times (jump times).
In other words, a compound Poisson process generates a sequence of pair (τk, ξk)k∈N of jump
times τk and marks ξk. The size of the jumps is determined by the marks ξi and the number
of jumps up to a time t is determined by Nt . We can associate a random measure to any
counting process as follows. For any Borel set B ⊂ R+, for any ω, set

π(ω,B) = #{k ≥ 1 : τk(ω) ∈ B},
where τk is the sequence of jump times. The map B 12 π(ω,B) defines a positive measure on
R+. One may view the random measure as some form of derivative of a Poisson process. To
visualise this, recall that each trajectory t 12 Nt(ω) of a Poisson process is an increasing step
3A positive random variable with parameter λ > 0 is said to be exponential if the it has a probability density
function of the form λe−λy1y≥0.
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function. Hence its derivative (in the sense of distributions) is a positive measure: in fact it is
simply a superposition of Dirac mass centred at jump times:

d
dtNt(ω) = π(ω, [0, t]) where π = ∑

i≥1
δτi (ω).

π(ω, dt) = ∑k δτk(ω)(dt). Moreover, the r.v. Nt can be written as
Nt(ω) = π(ω, (0, t]) =

∫
(0,t]

π(ω, ds)

and the Stieltjes integral as ∫ t0 f (s)dN(s) = ∫ t0 f (s)π(ds).
Let H0 = H \ {0} and let λ be a measure on B(H0).4 Consider now on H0 × [0,∞) a given
intensity measure of the form

λρ(dy × dt) = ρ(dy)dt
where ρ is a measure on H0 with

∫
H0

min(1, |y|2)ρ(dy) < ∞

The corresponding Poisson random measure πρ(·) on H0 × [0,∞) is assumed to be a Poisson
distributed r.v. with intensity

λρ(A) =
∫ T

0

∫
H0

1(y,t)∈A ρ(dy)dt

counts the number of points in A ⊆ H0 × [0,∞) for T ∈ (0,∞) and each set A from the product
sigma algebra B(H0) and B([0,T]). This implies,

P(πρ(A) = k) = e−λρ(A)λρ(A)k
k!

for k ∈ {0, 1, · · · }. For disjoint measurable sets A1, · · · ,Ar,⊆ H0×[0,T], the r.v. πρ(A1), · · · , πρ(Ar),
r ∈ N are assumed to be independent.

Definition 2.4.2. Let (Ω,F,P) be a probability space, Hilbert space H and λ a given (positive)
radon measure λ on (H0,B(H0)). A Poisson measure on H0 with intensity measure λ is an
integer valued random measure:

π :Ω × H0 → N

(ω,A) 12 π(ω,A)
such that
4We denote by B(Γ) that the smallest sigma-algebra containing all open sets of a set Γ.
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• For (almost all) ω ∈ Ω, π(ω, ·) is an integer-valued Borel probability measure on H0: For
any bounded measurable A ⊂ H0, π(A) < ∞ is an integer valued r.v.

• For each measurable set A ⊂ H0, π(·,A) = π(A) is a Poisson random measure with
parameter λ(A) :

P(πρ(A) = k) = e−λ(A)λ(A)k
k! , ∀k ∈ N.

• For disjoint measurable sets A1, · · · ,Ar,⊆ U0 × [0,T], the r.v. πρ(A1), · · · , πρ(Ar), r ∈ N
are assumed to be independent.

A Poisson random measure on [0,T] × H0 can be represented as a counting measure:
π(ω, ·) = ∑

k≥1
δτk(ω),ξk(ω).

Moreover, the integral If ,πρ (t) for the integrand f = {f (t, y), t ≥ 0, y ∈ H0} is obtained as

If ,πρ =
∫ T

0

∫
H0
f (s, y)πρ(dy, ds).

Let us now introduce a weaker concept of measurability. In particular, Let us first define what
is meant by a strongly measurable function.

Definition 2.4.3. Let U and E be two separable Hilbert spaces. (1) A function Φ : [0,T]×[0,T]×
Ω → L(U,E) is said to be simple if there exist integers N1,N2 ≥ 1, partitions (si) and (tk) of
[0,T], family of pairwise disjoint Ftk -measurable sets {Akj : k ≤ N2 − 1, j ≤ N3} and a family
of operators {φijk : i ≤ N1, k ≤ N2, j ≤ N3} ⊂ L(U,E) such that

Φ(s, t, ω) =
N1−1∑
i=0

N2−1∑
k=0

N3∑
j=0

1(si,si+1](s)1(tk,tk+1](t)1Akj (ω)φijk .

Let S(T,T,U,E) denote the class of all simple processes.
(2) A function Φ : [0,T] × [0,T] × Ω → L(U,E) is said to be strongly measurable if there exists
a sequence (Φn) of simple functions, such that for each y ∈ U ,

|Φy − Φny|E → 0, P − a.s. .
Denote by H(T,T,U) the linear space of all equivalence classes of mapping Φ : [0,T]× [0,T]×
Ω → L(U,E) strongly P[0,T]×[0,T] measurable for which

∫ T

0

∫ T

0

∫
U

|Φ(s, σ )y|π(dy, dσ )ds < ∞, P − a.s.
and such that

• For every y ∈ U the E-valued process Φy is predictable
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• and
P
(∫ T

0

∫ T

0

∫
U

|Φ(s, σ )y|π(dy, dσ )ds < ∞
)

= 1.
In a similar way we can define a real separable Hilbert space H(T,T,U) endowed with the
norm

|Φ|H(T,T,U) :=
(
E
∫ T

0

∫ T

0

∫
U

|Φ(s, σ )y|2π(dy , dσ )ds
)1/2

< ∞
is a real separable Hilbert space. It follows that the space S(T,T,U,E) is dense in H(T,T,U,E).
A by-product of stochastic integrals w.r.t. Poisson random measures and compensated Poisson
random measures is the celebrated Lévy Itô decomposition we have seen earlier, which gives
a representation of the non-Gaussian part of a Lévy process via the integrals.
Let f : [0,T] → L(U,E), and we define the stochastic integral

∫ T

0
f (s)dL(s).

To this end, we follow the idea in [23]. By the Lévy Itô decomposition, any jump Lévy process
L(t) can be decomposed into a small jumps5 process and a large jump process:

L(t) = L1(t) + L2(t), t ≥ 0.
Let ν denotes the intensity measure. Then L1 is the Lévy process corresponding to ν1 defined
by

ν1(Γ) := ν(Γ ∩ BU (0, 1)),
where BU (0, 1) := u ≤ U : |u|U ≤ 1. the closed unit ball on U . The process can be easily
constructed in term of Poisson random measure π associated with the process L defined by
the formula

#{s ≤ t : ∆L(s) ∈ Γ} = π([0, t] × Γ) := limε↓0
∑
ε≤s≤t

IΓ(∆L(s)), Γ ∈ B(U\{0}),

where ∆L(s) := L(s) − L(s−), s ≥ 0. It can be shown that π is a time homogeneous Poisson
random measure and L can be expresses in term of the random measure π as

L(t) = ∑
s≤t

∆L(s) =
∫ t

0

∫
U
yπ(dy, ds), t ≥ 0.

5Without loss of generality, assume jump size 1 as cutoff.
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Then one can define L1 and L2 by the following slight modification of the above formula.

L2(t) = ∑
s∈[0,t]

∆L(s)I{∆L(s) ≥ 1} =
∫ t

0

∫
|y|≥1

yπ(dy, ds),

L1(t) = ∑
s∈[0,t]

∆L(s)I{∆L(s) < 1} =
∫ t

0

∫
|y|<1

yπ(dy, ds).

Thus,
∫ T

0
f (s)dL(s) =

∫ T

0
f (s)dL1(s) +

∫ T

0
f (s)dL2(s).

One can check that both integrals w.r.t. L1 and L2 take values in E . (See p.165 [23] for more
detail)
We are now ready to present a new version of stochastic Fubini theorem which capture both
large and small jumps.

Theorem 2.4.4. Let U and E be separable Hilbert spaces. Let (Ω,F,P) be a probability
space and let T > 0 be fixed. Assume that the mapping [0,T] × [0,T] × Ω ∋ (s, σ, ω) 12
Φ(s, σ, ω) ∈ L(U,E) is a strongly measurable with respect to the σ -algebra B([0,T]) ⊗ PT ,
where PT stands for the predictable σ -algebra in [0,T] × Ω. More precisely, we assume that
for every y ∈ U the mapping [0,T] × [0,T] × Ω ∋ (s, σ, ω) 12 Φ(s, σ, ω)y ∈ E is measurable
with respect to the σ -algebra B([0,T]) ⊗ PT . Furthermore, assume that L is a U-valued Lévy
process defined as L(t) := W (Z(t)), Z(t) is a subordinator process belonging to Sub(p), i.e.
Z(t) has intensity measure satisfying

ρ({0}) = 0,
∫ ∞

1
ρ(dξ) +

∫ 1

0
ξρ(dξ) < ∞

∫ 1

0
ξ p

2 ρ(dξ) < ∞, (3)
where ρ and ν are respectively the intensity measure on R and Lévy measure on U0. One
relates ρ and ν as

ν(Γ) =
∫ ∞

0
ζs(Γ)ρ(ds), Γ ∈ B(Y ).

Then ∫ T

0

(∫ s

0
Φ(s, σ )dL(σ )

)
ds =

∫ T

0

(∫ T

σ
Φ(s, σ )ds

)
dL(σ ). (4)

Proof. Assume first that Φ is a simple process of the form
Φ(s, σ, ω) = I(s1,s2](s)I(t1,t2](σ )IA(ω)φ

with a bounded operator φ : U → E and A ∈ Ft1 . It is easy to check that the theorem holds
in this case and by linearity it holds for every Φ ∈ S(T,T,U,E). It is also easy to see that the
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theorem holds for the case when L = L2, that is when |∆L(t)| ≥ 1. Indeed let τk, denote jumps
of the process L. Then only finite number of jumps can occur before time T and therefore

∫ T

0

(∫ s

0
Φ(s, σ )dL(σ )

)
ds =

∫ T

0

∑
τk≤s

Φ(s, τk−)(L(τk) − L(τk−))ds

= ∑
τk≤T

(∫ T

τk
Φ(s, τk−)ds

)
(L(τk) − L(τk−))

=
∫ T

0

(∫ T

σ
Φ(s, σ )ds

)
dL(σ )

.

For the small jump, the proof follows the same lines as p.14 in [3]. !

2.5 Subordinator and Subordinated processes in the Hilbert
space

A subordinator is a real-valued Lévy process which takes nonnegative values only. Combine
with the definition of Lévy processes, we will see in the characterization theorem 2.5.2 that
subordinators must be an increasing process. Put in another way, subordinator is precisely
a convolution semigroup (µt , t ≥ 0) of probability measures on R wherein each supp(µt) ⊆
[0,∞)[6]. By increasing we mean that the trajectories of Z are a.s. nondecreasing : Z(t) ≥ Z(s)
whenever t ≥ s.
Using subordinators, one can construct new and interesting examples of convolution semi-
groups.
Suppose λ is a measure on R then we denote its Laplace transform by

λ̃(r) =
∫
R
e−rξλ(dξ)

for all values of r such that the integral remains finite. In particular, if λ has support on [0,∞)
then λ̃(r) is defined (perhaps infinite) at least for r ≥ 0.
Using the Lévy Itô decomposition, one can show that any subordinator must have its diffusion
coefficient as zero, drift b must be nonnegative, and the Lévy measure ρ cannot be on (−∞, 0).
More precisely, one has the following fundamental characterization theorem of subordinator
processes (See Theorem 2.1 in [23], also Theorem 21.5 [95]).

Lemma 2.5.1 (p.53[87]). For every Borel set Γ, such that the closure of Γ does not contain 0
and for all r ≥ 0,

EerZ(t) = exp
(
t
∫

Γ
(1 − erx)

)
ν(dx).
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Proof. By an easy limiting argument one can assume that Γ is bounded. Given δ > 0, let
Γ1, · · · ,Γm be disjoint sets of diameters less than δ and such that Γ = ∪mk=1Γk. In addition let
xk ∈ Γk, k = 1, · · · ,m. Then∣∣∣∣∣ZΓ(t) −

m∑
k=1

xkπΓk (t)
∣∣∣∣∣
H

≤
m∑
k=1

|ZΓ(t) − xkπΓk (t)|H

≤ δ
m∑
k=1

πΓk (t) = δπΓ(t),

and so
m∑
k=1

xkπΓk (t) → ZΓ(t)

P-a.s., as δ → 0. Consequently,

EerZΓ(t) = limδ→0 E exp
(
r

m∑
k=1

xkπΓk (t)
)

= limδ→0

m∏
k=1

E exp ((rxk)πΓk )

= limδ→0

m∏
k=1

exp (tν(Γk)(1 − erxk ))

= exp
(
t
∫

Γ
(1 − erxk )ν(dx)

)
.

!

Theorem 2.5.2. Suppose that Z = (Z(t), t ≥ 0) is a subordinator process defined on the
probability space B = (Ω,F,P), then there exists a real number b ∈ R+, a non-negative
measure ρ on (R+,B(R+)) satisfying

ρ({0}) = 0,
∫ ∞

1
ρ(dx) +

∫ 1

0
xρ(dx) < ∞, (2.9)

such that
Ee−rZ(t) = e−tψ(r), r ≥ 0, t ≥ 0, (2.10)

where
ψ(r) = br +

∫ ∞

0
(1 − e−rx)ρ(dx), r ≥ 0. (2.11)

The proof in [23] is missing. For completeness, we fill in the gap with the proof in [95].
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Proof. Sufficiency. (“IJ”) It follows from ∫
(−∞,0) ρ(dx) = 0 and the definition of Poisson

random measure (Sato [95], Theorem 19.2(i)) that JL((0, t] × (−∞, 0)) = 0. a.s., meaning that Z
does not have any negative jumps. Then, by the Lévy Itô decomposition with the Lévy measure
satisfying ∫|x|≤1 |x|ρ(dx) < ∞ (Sato, Theorem 19.3), L = L(t) takes the form

L(t) = L1
t + L2

t L(t) =
∫

(0,t]×(0,∞)
xπ(d(s, x))

︸ ︷︷ ︸
L3t

+ tb︸︷︷︸
L4t

a.s.,

where
L1
t =

∫
(0,t]×(0,∞)

xπ(d(s, x)), L2
t = tb.

From the fact L2t = tb we see that Lt(ω) is clearly an increasing function of t. This shows Lt
is increasing.
Necessity. (“KB”) Since Zt has no negative jumps, we know from the definition of random
measure (Sato [95], theorem 19.2(i) ) that ρ((−∞, 0)) = 0. Since an increasing function stays
increasing after finite number of jumps deleted. Hence, the limit for the sum of jumps Lε(t),
denoted as L̃(t) exists, so

L̃(t) = limε↓0 Lε(t) =
∫

(0,t]×(0,∞)
xπ(d(s, x), ω),

and this limit is bounded above by L(t), so L̃(t) ≤ L(t). Then using Proposition 2.5.1, one has
Ee−rLε(t) = exp

{
t
∫

(ε,∞)
(e−rx − 1)ρ(dx)

}

= exp
{
t
∫

(ε,∞)
(e−rx − 1 + rxI(0,1](x))ρ(dx) − tr

∫
(ε,1]

xρ(dx)
}
.

As ε ↓ 0, on the left hand side we have
Ee−rLε(t) → Ee−rL̃(t) ≥ 0, for u > 0.

Where the exponent −rL̃ < 0 and so e−rL̃ < 1, the convergence of left hand side is clear, by
dominated convergence. Notice on the right hand side that

∫
(ε,∞)

(e−rx − 1 + rxI(0,1](x))ν(dx) L2
∫

(0,∞)
(e−rx − 1 + rxI(0,1](x))ν(dx) as ε ↓ 0,

which is finite as ∫
H

(1 ∧ x2)ν(dx) < ∞
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Hence, ∫
(0,1]

xρ(dx) < ∞
Now by the Lévy Ito decomposition, one has

Lt = L1
t︸︷︷︸

jump
+L2

t ,

which implies,
L3
t = L̃(t)

and L4t has triple (b,Q, 0). But
L4
t = Lt − L̃(t) ≥ 0

implies
Q = 0 and b ≥ 0.

!

Definition 2.5.3 (p.156,[23]). For p ≥ 0, denote by Sub(p) the set of all subordinator process Z
whose intensity measure ρ satisfies

∫ 1

0
ξ p

2 ρ(dξ) < ∞. (2.12)

Example 1. (1) It is obvious that if
0 < p1 < p2 < 2 ≤ p3,

then
Sub(p1) ! Sub(p2) ! Sub(2) = Sub(p3).

(2) Note, if β ∈ (0, 1) and the measure ρ is defined by
ρ(dξ) = 1

βΓ(1 − β)ξ1+β 1(0,∞)(ξ)dξ,

where Γ is the Euler-gamma function (Γ(z) = ∫∞
0 tz−1e−tdt,Rez > 0).

(3) Note that zβ ∈ Sub(p) iff p > 2β, i.e. β < p
2 . In particular, Zβ ∈ Sub(1) iff β < 1

2 .
(4) A standard Poisson process N with rate 1 is a subordinated process with drift b = 0 and
the intensity measure ρ = δ1. Here, δ1 denotes the Dirac Delta function at 1.
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Now Let us examine a couple of examples of convolution semigroups. In essence, they are
the consequences of the Lévy Itô decomposition where X is (a) a subordinator, (b) β-stable
process, (c) a subordinated process.

Proof. For (a), it is clear in view of Theorem 2.5.2. For (b), in the case β ∈ (0, 1), we are in the
framework of Theorem 2.5.2. Assuming that b = 0 and ρ(dξ) = ξ−1−βdξ for β ∈ (0, 1). Then

ψ(r) =
∫ ∞

0
(1 − e−rξ) dξξ1+β r > 0.

For r > 0, the change of variable η = rξ gives
ψ(r) =

∫ ∞

0
(1 − e−rξ) dξξ1+β =

∫ ∞

0
(1 − e−η)r

βdη
η1+β = rβψ(1).

Integrating by parts, one obtain ψ(1) = 1
βΓ(1−β) . For the case β ∈ (1, 2), assume that β ∈ (1, 2)

and
ψ(r) =

∫ ∞

0
(1 − e−rξ − rξ) dξξ1+β , r > 0.

Then, in the same manner as in the previous case, one obtains that ψ(r) = rβψ(1), r > 0 where
ψ(1) = − 1

β(β−1)Γ(2−β) . The proof of (c) will be cleared after introducing Theorem 2.5.4. !

One useful application of subordinators is to produce new convolution semigroups of measures
on Hilbert spaces. Namely, suppose (ζt, t ≥ 0) is a convolution semigroup of probability
measures on a Hilbert space H with exponent λ, that is, ∫H ei⟨x,y⟩Hζt(dy) = e−tλ(x). Let (µt) be
a convolution semigroup of probability measures on [0,∞) such that ∫∞

0 e−rξµt(dξ) = e−tψ(r).
The subordinated law (ζ̃t)t≥0 on H is defined by

ζ̃t :=
∫ ∞

0
ζsµt(ds), t ≥ 0

is a convolution semigroup of measures with exponent λ̃(x) = ψ(λ(x)), x ∈ H.
Claim : (ζ̃t , t ≥ 0) is a convolution semigroup on H and

ζ̃t+s = ζ̃t ∗ ζ̃s, ∀ t, s ≥ 0.
The proof is missing in [23] , we fill in this gap here. The key is to verify the three properties
in the definition of convolution semigroup. Namely,

(i) ζ̃0 = δ0
(ii) ζ̃t → ζ̃0 weakly as t ↓ 0,
(iii) ζ̃t ∗ ζ̃s = ζ̃t+s , t, s ≥ 0
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Proof. For (i) we have
ζ̃0 =

∫ ∞

0
(ζs)µ0(ds)

=
∫ ∞

0
(ζs)δ0(ds)

= ζ0 = δ0

by definition of ζ. To prove (ii) it is enough to show that for every r > 0
limt→0 ζ̃t(B

c
r ) = 0,

where Bcr is the complement of a centered ball of radius r in H . To this end we note that
ζ̃t(Bc

r ) =
∫ ∞

0
ζs(Bc

r )µt(ds)
and since µt and ζs are convolution semigroups, for every ε > 0 and a > 0 we can find t0 > 0
such that µt([a,∞) < ε for t < t0, and for all s < t0 ζs(Bcr ) < ε . Therefore, for t < t0

ζ̃t(Bc
r ) ≤

∫ a

0
ζs(Bc

r )µt(ds) + ε ≤ 2ε.
Finally, to check Semigroup property, Let (ζs, s ≥ 0) be a convolution semigroup on H. Let
(µs, s ≥ 0) be a subordinator on R+. By the Riesz representation theorem , for each t ≥ 0,
there exists a probability measure ζ̃t on U such that for any f ∈ Cc(U),

It(f ) =
∫

U
f (σ )ζ̃t(dσ ) =

∫
(0,∞)

∫
U
f (σ )ζs(dσ )µt(ds).

The relationship between the 3 families of measures is frequently expressed using the vague
integral

ζ̃t(A) :=
∫ ∞

0
ζs(A)µt(ds) ∀ t ≥ 0,A ∈ B(U). (5.7.21)

It is clear that the subordinated law form a convolution semigroup as well, namely,
(ζ̃t , t ≥ 0) is a convolution semigroup of measures on U and so ζ̃t+s = ζ̃t ∗ ζ̃s.
For all s, t ≥ 0, f ∈ Cc(U) ∫

U
f (x)ζ̃s+t(dx) =

∫
U
f (x)

∫ ∞

0
ζr(dx)µs+t(dr)

=
∫

U

∫ ∞

0
f (x)ζr(dx)

︸ ︷︷ ︸
f̃ (r)

µs+t(dr)

=
∫

U
f̃ (r)µs+t(dr).
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Now by Generalised Fubini theorem, (see Proposition 35.14 [84]), since∫
|f (x)ζr(dx)|µs+t(x, dr) < ∞ a.e. x(ζ̃s+t)

Then∫
U
f (x)ζr(dx)dν =

∫
U
f (x)ζr(dx)

∫ ∞

0
χE(x, r)µs+t(x, dr) =

∫
U

∫ ∞

0
f (x)µs+t(x, dr)ζr(dx),

where E ∈ B1.
ν(E) =

∫
U

(∫ ∞

0
χE(x, r),µs+t(x, r)

)
ζs(dx).

Hence, we can swap the integral ∫U
∫∞

0 · · · to ∫∞
0
∫

U · · · legitimately now and to continue on,
∫

U
f (x)ζ̃s+t(dx) =

∫
U
f (x)

∫ ∞

0
ζr(dx)µs+t(dr)

=
∫

U

∫ ∞

0
f̃ (r)µs+t(dr)

∫
(0,∞)

∫
U
f (x)ζr(dx)µs+t(dr) =

∫ ∞

0

∫
U
f (x)ζr(dx)µs(dr − z)µt(dz)

Now, let r − z = v, dr = dv , as z is a constant.
=
∫ ∞

0

∫ ∞

0

∫
U
f (x)ζz+v(dx)µs(dv)µt(dz)

=
∫ ∞

0

∫ ∞

0

∫
U
f (x)

∫
U
ζz(dx − v)ζv(dv)µs(dv)µt(dz)

=
∫ ∞

0

∫ ∞

0

∫
U

∫
U
f (x)ζz(dx − v)ζv(dv)µs(dv)µt(dz)

=
∫

U

∫
U
f (x)

∫ ∞

0
ζz(dx − v)µt(dz)

∫ ∞

0
ζv(dv)µs(dv)

=
∫

U

∫
U
f (x)ζ̃t(dx − v)ζ̃s(dv)

=
∫

U
f (x)

∫
U
ζ̃t(dx − v)ζ̃s(dv)

=
∫

U
f (x)(ζ̃t ∗ ζ̃s)(dx).

Whence, ζ̃t+s = ζ̃t ∗ ζ̃s. !

2.5.1 Stable process as a Subordinated cylindrical Wiener process
Lévy processes form a very rich class of processes. However, general Lévy processes are
not very tractable. Subordinated cylindrical Wiener processes are obtained from Cylindrical
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Wiener processes by replacing its time parameter t by independent subordinators, i.e. in-
creasing Lévy processes starting from 0. In particular, Let W = (W (t), t ≥ 0) be a U-valued
Wiener process, and let Z = (Z(t), t ≥ 0) be a independent subordinator Z α

2 with α ∈ (0, 2),
i.e. where ρ is defined by formula (2.12) with β = α

2 . Then the process (L(t), t ≥ 0) defined
by L(t) := W (Z(t)), t ≥ 0 is called the subordinated H-cylindrical Wiener process, or the H-
cylindrical α-stable process. Essentially, we have constructed a stable process with parameter
range in (0, 2) via subordinating a H-cylindrical Wiener process with a stable process with
parameter β ∈ (0, 1). More explicitly, Let W = (W (t), t ≥ 0) be a (cylindrial) Brownian motion
on U having the form

W (t) := ∑
k

Wk(t)ek, t ∈ [0,T]

where Wk(t) = W (t, ek) is a sequence of independent standard Brownian motion in R on
some (Ω,F,P; U). and ek is an orthonormal basis of H . We remark that this series does not
converge in H as dim H = ∞. It does converge, however in any Hilbert space U such that the
embedding H ↪2 U is Hilbert-Schmidt.
Consider the subordinator Z β

2 , where β ∈ (0, 2), that is, an increasing one dimensional Lévy
process with Laplace transform

Ee−rZ(t) = e−tr β2 , r > 0
The subordinated cylindrical Wiener process (Lt , t ≥ 0) on H is defined by

L(t) := W (Z(t)).
We remark that, in general, L(t) do not belong to H . Indeed, L lives on some Banach space
U ⊃ H and the embedding H ↪2 U is γ radonifying.
Let W be a Wiener process associated with the convolution semigroup (ζs, s ≥ 0), Let Z be a
Lévy processes associated with the convolution semigroup (µs, s ≥ 0), assume W is independent
to Z . We are now focus our studies in the subordinator defined by

L(t) := W (Z(t)).

Theorem 2.5.4 (Theorem 2.4 [23]). Suppose that H is a separable Hilbert space and U
is a separable Banach space such that H ⊂ U continuously and densely. Assume that
Z is a subordinator process with the intensity measure ρ and the drift b. Assume that
W = (W (t), t ≥ 0) is an U-valued Wiener process with the Reproducing Kernel Hilbert
Space (RKHS) of W (1) equal to H . Let us denote ζs = L(W (s), s ≥ 0).
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i) If the process L is defined by (L := W (Z(t), t ≥ 0)) then
Eei⟨L(t),φ⟩U,U∗ = e−tλ(φ), φ ∈ U∗, t ≥ 0, (2.13)

where the function λ is defined by
λ(φ) = ψ

(1
2 |φ|2H

)
, φ ∈ H, (2.14)

with ψ being defined by (2.3).
ii) Moreover L is a U-valued Lévy process such that

Eei⟨L(t),φ⟩ = e−t ∫U (1−ei(u,φ))ν(du), φ ∈ U∗, t ≥ 0 (2.15)
where the measure ν is given by

ν(Γ) =
∫ ∞

0
ζs(Γ)ρ(ds), Γ ∈ B(U), (2.16)

and
PV
∫

U
(1 − ei⟨u,φ⟩)ν(du) := limε↓0

∫
u∈U :|u|≥ε

(1 − ei⟨u,φ⟩)ν(du).

iii) The process L is of finite variation iff
∫ 1

0

(∫
BU (0,1)

|u|Uζs(du)
)
ρ(ds) < ∞.

The process L will be called an H-cylindrical Lévy process subordinated by the (sub-
ordinator) process Z.

Proof. (i) Observe first that the process L is a well defined U-valued càdlàg process. For
brevity, assume the two independent stochastic processes W and Z are defined respectively
on the probability space (Ω1,F1,P1) and (Ω2,F2,P2) and Ω = Ω1 × Ω2, F = F1 × F2 and
P = P1 × P2. Then for any φ ∈ H , via conditional expectation,

Eei⟨L(t),φ⟩U,U∗ = E1E2(ei⟨W (z(t,ω2),ω1),φ⟩U,U∗ ) ω1 ∈ Ω1, ω2 ∈ Ω2

Since we want to integrate out ω1, swap E2 with E1

= E2E1(ei⟨W (z(t,ω2),ω1),φ⟩U,U∗ )
Then it follows from infinite divisibility that,

= E2e−Z(t,ω2) 1
2 |φ|2

= e−tψ( 1
2 |φ|2)

= e−tλ(φ)

!
62



(ii) From (i), we have
Eei⟨Y (t),φ⟩ = e−tψ( 1

2 |φ|2).
The question now, is to find Lévy triplet for L(t), who lives in a Hilbert space. The idea is to
create a new convolution semigroup of measure on U with exponent φ(φ) : ∫U ei⟨φ,sζt(ds) =
e−tφ(φ).. On the other hand, let µt be a convolution semigroup of measure on [0,∞) with
exponent ψ(r) : ∫∞

0 e−rξµt(dξ) = e−tψ(r).Then, by a direct computation, the following
ζµt
t (Γ) :=

∫ ∞

0
ζs(Γ)µt(ds), t ≥ 0

is a convolution semigroup of measures with exponent λ(φ) = ψ(φ(φ)). To be consistant with
the notations used in the paper, replace µt with ρ, ζt with ν. We will now see how the Lévy
measure

ν(Γ) :=
∫ ∞

0
ζs(Γ)ρ(ds), γ ∈ B(U).

Proof. (ii)
Eei⟨L(t),φ⟩ = e−tψ( 1

2 |φ|2)

= exp
{

−t
∫ ∞

0
(1 − e− s

2 |φ|2H )ρ(ds)
}

Note, Eei⟨L(t),φ⟩ = ∫U ei⟨φ,u⟩ζs(du) = e− s
2 |φ|2H

= exp
{

−t
∫ ∞

0
(1 −

∫
U
ei⟨u,φ⟩ζs(du))ρ(ds)

}
.

The integral ∫
U ei⟨u,φ⟩ζs(du) may not converge as ζs(du) may not be finite at 0. So, take

principle value with cut-off at 0.
= exp

{
−t
∫ ∞

0
limε↓0 (1 −

∫
u∈U :|u|≥ε

ei⟨u,φ⟩ζs(du))ρ(ds)
}

= exp
{

−t
∫ ∞

0
PV
∫

U
(1 − ei⟨u,φ⟩ζs(du))ρ(ds)

}

= exp
{

−tPV
∫ ∞

0

∫
U

(1 − ei⟨u,φ⟩ζs(du))ρ(ds)
}

= exp
{

−tPV
∫

U
(1 − ei⟨u,φ⟩ν(du)

}
, φ ∈ U∗, t ≥ 0

where the measure ν is given by formula
ν(Γ) =

∫ ∞

0
ζs(Γ)ρ(ds), Γ ∈ B(U),
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and
PV
∫

U
(1 − ei⟨u,φ⟩ν(du) := limε↓0

∫
u∈U :|u|>ε

(1 − ei⟨u,φ⟩)ν(du).

Moreover, in view of (2.9) and (2.13) and assuming no drift, one has
PV
∫

U
(1 − ei⟨u,φ⟩ν(du) =

∫ ∞

0
PV
∫

U
(1 − ei⟨u,φ⟩)ζs(du)ρ(ds).

These conclude the proofs of (i) and (ii) !

Proof. (iii) Recall, an U-valued Lévy process L with intensity measure ν is of finite variation
iff. ∫BU (0,1) |u|Uν(du) < ∞. Let now L(t) and ν be as found in (i) and (ii), i.e.

L(t) := W (Z(t)) with Eei⟨L(t),φ⟩ = e−tPV ∫U (1−ei⟨u,φ⟩ν(du) φ ∈ U∗, t ≥ 0,
ν(Γ) =

∫ ∞

0
ζs(Γ)ρ(ds), Γ ∈ B(U)

Since then∫
BU (0,1)

|u|Uν(du) =
∫ ∞

0

(∫
BU (0,1)

|u|Uζs(du)
)
ρ(ds)

=
∫ 1

0

(∫
BU (0,1)

|u|U
)
ρ(ds) +

∫ ∞

1

(∫
BU (0,1)

|u|Uζs(du)
)
ρ(ds)

=
∫ 1

0

(∫
BU (0,1)

|u|Uζs(du)
)
ρ(ds) +

∫ ∞

1
ρ(ds) (†)

In view of (2.1), ∫ 1
0 ξρ(dξ) + ∫∞

1 ρ(dξ) < ∞

< ∞ iff.
∫ 1

0

(∫
BU (0,1)

|u|Uζs(du)
)
ρ(ds) < ∞ (‡)

Well, if (†) exists, and since ∫∞
1 ρ(ds) by (2.1), then necessarily (‡) holds. Conversely, if (‡) holds,

it is clear that (†) must be finite. When the subordinated Lévy process has finite variation. !

Remark. (1) Since H is assumed to be the RKHS of W (1), this implies the embedding H ↪2 U
is γ-radonifying. (2) In view of Fernique Theorem, ζs is Gaussian and so has finite second
moment. Moreover, there exists C > 0 such that for all s > 0, ∫U |u|2ζs(du) ≤ Cs. (3) Given
a separable Hilbert space H and a real number p ∈ (0,∞) we will denote by LSub(H, p) that
the class of all Lévy processes L of the form (L(t) := W (Z(t)), t ≥ 0), where W is H-cylindrical
Wiener process and Z is an independent subordinator of class Sub(p). (4) In the special case
of the subordinator process Z α

2 , with α ∈ (0, 2), that is, when ρ is defined by formula (2.12) with
β = α

2 , the process L constructed in view of Theorem 2.5.4 will be denoted by Lα and is called
64



the H-cylindrical α-stable process. Note that
Eei⟨Lα(t),φ⟩ = e−tλα(φ), φ ∈ U∗, t ≥ 0

where λα is defined by

λα(φ) =
(1

2
) α

2 |φ|αH , φ ∈ H (2.17)
(5) It follows from Example 1 (ii) that Lα belongs to the class LSub(H, p) iff α < p.
(6)Suppose the Lévy process L and its intensity measure ν are defined as in Theorem 2.5.4.
By part (iii) of the teorem, the process L is of finite variation iff. ∫BU (0,1) |u|Uν(du) < ∞.
(7) It follows from part (5) of these remarks that, if in addition H = U = R, the process Lα is
of finite variation in U iff. α ∈ (0, 1), i.e.

∫ 1

0
s1/2s−1− α

2ds < ∞.
Proof. The proofs of (1)-(3), (5) are trivial. We prove (4), (6),(7). To see why (2.17) is true, we
use (2.11) with 0 drift. Then by Theorem (2.5.2),

λ(φ) = ψ
(1

2 |φ|2H
)

= 1
α
2 Γ(1 − α

2 )
∫ ∞

0
(1 − e− 1

2 |φ|2Hξ)ξ−1− α
2 dξ.
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Let a = 1
2 |φ|2ξ and da = 1

2 |φ|2dξ , then

= 1
α
2 Γ(1 − α

2 )
∫ ∞

0
(1 − e−a)

(
a

|φ|2
2

)−1− α
2 da

|φ|2
2

= 1
α
2 Γ(1 − α

2 )
∫ ∞

0
(1 − e−a)a−1− α

2

( 2
|φ|2

)−1− α
2 +1

da

=
( |φ|2

2
) α

2 1
α
2 Γ(1 − α

2 )
∫ s

0
e−rdr da

a1+ α
2

=
(1

2
) α

2 |φ|αH 1
α
2 Γ(1 − α

2 )
∫ s

0
e−rdr

(α
2
)
e− α

2

= 1
α
2 Γ(1 − α

2 )
(1

2
) α

2 |φ|αH
∫ ∞

0
e−r dr

(α
2
)
r− α

2

= 1
α
2 Γ(1 − α

2 )
(1

2
) α

2 |φ|αH α2
∫ ∞

0
e−rr1− α

2 −1dr

= 1
α
2 Γ(1 − α

2 )
(1

2
) α

2 |φ|αH α2 Γ(1 − α
2 )

= (12) α2 |φ|αH .
Now, Let L be a U-valued Lévy process with intensity measure ν be defined as in Theorem 2.4.

Eei⟨L(t),φ⟩ = e−tλα(φ), φ ∈ U∗, t ≥ 0,
where λα(φ) = (1

2
) α2 |φ|αH , φ ∈ H. Then, L is of finite variation iff.

∫
BU (0,1)

|u|Uν(du) < ∞

⇐B
∫

BU (0,1)
|u|U

∫ ∞

0
ζs(du)ρ(ds) < ∞

⇐B
∫ ∞

0

(∫
BU (0,1)

|u|Uζs(du)
)
ρ(ds) < ∞

So (4), (6) are proved. Now we prove (7). From (5), we see Lα ⊂ LSub(H, p) iff. α < p. Now
let H = U = R, the process Lα is of finite variation in U iff. ∫ 1

0 s1/2s−1− α
2 ds < ∞, that is, iff
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α ∈ (0, 2). To see this,
Lα ⊂ LSub(H, p)

KB
∫ 1

0
ξ p

2 ρ(dξ) < ∞

KB
∫ 1

0
ξ p

2
1

βΓ(1 − β)ξ1+β ξ(0,∞)(ξ)dξ < ∞

KB 1
βΓ(1 − β)ξ1+β

∫ 1

0
ξ p

2 ξ(0,∞)(ξ)dξ < ∞
Now, with p = 1, β = α

2

KB 1
βΓ(1 − β)ξ1+β

∫ 1

0
ξ p

2 ξ(0,∞)(ξ)dξ < ∞

KB
∫ 1

0
dξ

ξ− 1
2 +1+ α

2
< ∞

iff
−1

2 + 1 + α
2 < 1 KB α < 1.

!
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CHAPTER 3

Stochastic Navier-Stokes equations with cylindrical stable
noise on 2D rotating spheres: weak solution, strong solution

and invariant measure

Summary

Our goal in this chapter is to generalise the analysis in Gaussian case [14] to the case where
added noise is given by a stable Lévy noise. This chapter is concerned with the following
stochastic Navier-Stokes equations (SNSE) on a 2D rotating sphere:

∂tu + ∇uu − νLu + ω × u + ∇p = f + η(x, t), div u = 0, u(0) = u0 (3.1)
where L is the stress tensor, ω is the Coriolis acceleration, f is the external force and η is the
noise process that can be informally described as the derivative of an H-valued Lévy process.
Rigorous definitions of all relevant quantities in this equation will be given in section 2 and 3.
Our aim is to investigate the following three fundamental questions

• Does there exist weak solutions to (3.1) globally in time? Unique?
• Does there exist strong solutions to (3.1) globally in time? Unique?
• Does there exist stationary solutions to (3.1) time?

The new features in this chapter are the following. First, we prove that given L4-valued noise,
V ′-valued forcing f and small H-valued initial data, there exists an uniqueness global weak
(variational) solution which depends continuously on initial data. Moreover, with increased
regularity of forcing and initial data, we prove an unique strong (PDE) solution for the abstract
stochastic Navier-Stokes equations on the 2D unit sphere perturbed by stable Lévy noise. The
existence time interval depends on the regularity of force and the assumption of the noise.
Finally, deduce the existence of invariant measure for the SNSE and establish measure support.
The chapter is organised as follows. In section 3.1, we review the fundamental mathematical
theory for the deterministic Navier-Stokes equations (NSE) on the sphere. In subsection 3.1.1,
we recall some basic facts from spherical calculus and differential geometry. In subsection
3.1.2 we outline the necessary function spaces on the sphere in the theory of NSE on the
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sphere. In subsection 3.1.3, we recall the weak formulation of these equations. In section 3.2,
we define the SNSE on the spheres. We start with some analytic facts; we introduce the driving
noise process, which is a stable Lévy noise via subordination. The SNSE is then decomposed
into an Ornstein Uhlenbeck (OU) process (associated with the linear part of the SNSE) and a
shift-invariant subset of full measure is identified that satisfies the Marcinkiewicz strong law of
large number (see appendix). In section 3.3, we prove there exist global weak solution using
the usual Galerkin approximation based on vector spherical harmonic series expansion. (see
the proof of Theorem 3.2.5) Moreover, uniqueness is proven using the classical argument in
the spirit of Lion and Prodi [74]. Furthermore, the solution is shown to depend continuously on
initial data. (see the proof of Theorem 3.2.6) In section 3.4, we prove strong classical solution
(see the proof of Theorem 3.3.7) for smooth initial data, sufficient regular noise following the
classical lines in the proof of Theorem 3.1 [19]. In the final section, we prove the existence of
an invariant measure.

3.1 Navier-Stokes equations on a rotating 2D unit sphere
The sphere is the simplest example of a compact Riemannian manifold without boundary
hence one may employ the well-developed tools from Riemannian geometry to study objects
on such manifold. Nevertheless, all objects of interests in this thesis are defined explicitly
under the spherical coordinate. The presentation here follows closely from Goldys et al. [14]
and reference therein.

3.1.1 Preliminaries
Let S2 be the 2D unit sphere in R3, that is S2 = {x = (x1, x2, x3) ∈ R3 : |x| = 1}. An arbitrary
point x on S2 can be parametrized by the spherical coordinates

x = x̂(θ, φ) = (sin θ cos φ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.
The corresponding angle θ and φ will be denoted by θ(x) and φ(x), or simply by θ and φ.
Let eθ = eθ(θ, φ) and eφ = eφ(θ, φ) be the standard unit tangent vectors of S2 at point x̂(θ, φ) ∈ S2

in the spherical coordinate, that is,
eθ = (cos θ cos φ, cos θ sinφ,− sin θ), eφ = (− sinφ, cos φ, 0).

Remark that
eθ = ∂x̂(θ, φ)

∂θ , eφ = 1
sin θ

∂x̂(θ, φ)
∂φ ,

where the second identity holds whenever sin θ ̸= 0.
Our first aim is to give a meaning to all the terms in the deterministic Navier-Stokes equation

69



for the velocity field u(x̂, t) = (uθ(x̂, t), uφ(x̂, t)) of a geophysical fluid flow on a 2D rotating unit
sphere S2 under the external force f = (fθ, fφ) = fθeθ + fφeφ . Motion of the fluid is governed
by the equation

∂tu + ∇uu − νLu + ω × u + 1
ρ∇p = f , ∇ · u = 0, u(x, 0) = u0. (3.2)

Here ν and ρ are two positive constants denote the viscosity and the density of the fluid, the
normal vector field

ω = 2Ω cos(θ(x))x,
where x = x̂(θ(x), φ(x)) , Ω is the angular velocity of the earth and θ is the parameter rep-
resent the colatitude. Note that θ(x) = cos−1(x3). In what follows we will identify ω with the
corresponding scalar function ω defined by ω(x) = 2Ω cos(θ(x)).
We will introduce now other terms that appear in the equation.
The surface gradient for a scalar function f on S2 is given by

∇f = ∂f
∂θeθ + 1

sin θ
∂f
∂φeφ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

Unless specified otherwise, by a vector field on S2 we mean a tangential vector field, that is, a
section of the tangent vector bundle of S2.
On the other hand, for a vector field u = (uθ, uφ) on S2, that is u = uθeθ + uφeφ , one puts

∇ · u = 1
sin θ

( ∂
∂θ (uθ sin θ) + ∂

∂φuφ
)
. (3.3)

Given two vector fields u and v on S2, there exist vector fields ũ and ṽ defined in some
neighbourhood of the surface S2 and such that their restriction to S2 are equal to u and v .
More precisely, see Definition 3.31 in [44],

ũ|S2 = u : S2 → TS2, and ṽ|S2 = v : S2 → TS2 .
For x ∈ R3, we define the orthogonal projection πx : R3 → TxS2 of x onto TxS2, that is

πx : R3 ∋ y 12 y − (x · y)x = −x × (x × y) ∈ TxS2. (3.4)

Lemma 3.1.1. Suppose ũ and ṽ are R3-valued vector fields on S2, and u, v are tangent vector
field on S2, defined by u(x) = πx(ũ(x)) and v(x) = πx(ṽ(x)) , x ∈ S2. Then the following identity
holds

πx(ũ(x) × ṽ(x)) = u(x) × ((x · v(x))x) + ((x · u(x))x × v(x), x ∈ S2. (3.5)
Proof. The proof is in Goldys et al. [20], nevertheless, we include a summary of the proof
here for readers’ curiosity. Let us fix x ∈ S2. Then one may decompose vector ũ and ṽ into
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tangential and normal components as follows
ũ = u + u⊥ with u ∈ TxS2, u⊥ = (u · x)x,

ṽ = v + v⊥ with v ∈ TxS2, v⊥ = (v · x)x.
Since u× v is normal to TxS2, πx(u× v) = 0. Likewise, u⊥ × v⊥ = 0 since the cross product of
two parallel vectors yields the 0 vector. Hence, it follows that

πx(ũ × ṽ) = πx(u × v + u × v⊥ + u⊥ × v) = u × v⊥ + u⊥ × v (3.6)
!

We will denote by ∇̃ the usual gradient in R3 and then we have
(∇f )(x) = πx(∇̃f̃ (x)). (3.7)

The operator curl is defined by the formula
(curlu)(x) = (I − πx)((∇̃ × ũ)(x)) = (x · (∇̃ × ũ)(x))x. (3.8)

Let u be a tangent vector field on S2. Applying formula (3.6) to the vector fields ũ and ṽ = ∇̃×ũ,
one gets

πx(ũ × (∇̃ × ũ)) = ũ × (∇̃ × (u⊥ + u)
= u × ((∇ × u)⊥) + u⊥ × (∇ × u)
= u × ((x · (∇̃ × ũ))x)
= (x · (∇̃ × ũ))(u × x), x ∈ S2. (3.9)

So, we can now define the curl of the vector field u on S2, namely,
curl u := x̂ · (∇̃ × ũ)|S2 (3.10)

equations (3.6) and (3.10) yield
πx[ũ × (∇̃ × ũ)](x) = [u(x) × x] curlu(x), x ∈ S2

Therefore, we have the following

Definition 3.1.2. Let u be a tangent vector field on S2, and let the vector field ψ be normal to
S2. We set

curlu = (x̂ · (∇̃ × ũ))|S2, Curlψ = (∇̃ × ũ)|S2 (3.11)
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The first equation above indicates a projection of ∇ × ũ onto the normal direction, while the
2nd equation means a restriction of ∇×ψ to the tangent field on S2. The definitions presented
above do not depend on the extensions ũ and ψ̃. A vector field ψ normal to S2 will often be
identified with a scalar function on S2 when it is convenient to do so. The following describe
the relationships among Curl of a scalar function ψ, Curl of a normal vector field w = wx̂,
and curl of a vector field v on S2 and the surface div and ∆ operators are given as

Curlψ = −x̂ × ∇ψ, Curl w = −x̂ × ∇w, curl v = −div(x̂ × v). (3.12)
Let

(∇vu)(x) = πx
( 3∑

i=1
ṽi(x)∂iũ(x)

)
= πx ((ṽ(x) · ∇̃)ũ(x)) , x ∈ S2. (3.13)

Invoking (3.5) and the formula
(ũ · ∇̃)ũ = ∇̃ |ũ2|

2 − ũ × (∇̃ × ũ),
we find that the covariant derivative ∇uu takes the form

∇uu = ∇ |u2|
2 − πx(ũ × (∇̃ × ũ)).

In particular, using (3.5) we obtain
∇uu = ∇ |u|2

2 − u × curlu.
The surface diffusion operator acting on vector fields on S2 is denoted by ∆ (known as the
Laplace de Rham operator) and is defined as

∆v = ∇div v − Curl curl v. (3.14)
Using (3.12), one can derive the following relations connecting the above operators:

div Curl v = 0, curl Curl v = −x̂∆v, ∆Curl v = Curl∆v. (3.15)
Next, we recall the definition of the Ricci tensor Ric of the 2D sphere S2. Since

Ric =
(

E F
F C

)

where the coefficients E,F ,G of the first fundamental form are given by
E = xθ · xθ = 1
F = xθ · xφ = xφ · xθ = 0
C = xφ · xφ = sin2 θ
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we find that

Ric =
(

1 0
0 sin2 θ

)
. (3.16)

Finally we define the stress tensor L: it is given by
L = ∆ + 2Ric

where ∆ is the Laplace-de Rham operator.

3.1.2 Function spaces on the sphere
In what follows we denote by dS the surface measure on S2. In the spherical coordinate one
has locally, dS = sin θ dθdφ. For p ∈ [1,∞) we denote by Lp = Lp(S2,R) of p integrable scalar
function on S2 endowed with the norm

|v|Lp =
(∫

S2
|v(x)|pdS(x)

)1/p
.

For p = 2 the corresponding inner product is denoted by
(v1, v2) = (v1, v2)L2(S2) =

∫
S2
v1v2 dS

On the other hand, we denote Lp = Lp(S2) the space Lp(S2,TS2) of vector fields v : S2 → TS2

endowed with the norm
|v|Lp =

(∫
S2

|v(x)|pdS(x)
)1/p

,

where, for x ∈ S2, |v(x)| denotes the length of v(x) in the tangent space TxS2. For p = 2 the
corresponding inner product is denoted by

(v1, v2) = (v1, v2)L2 =
∫
S2
v1 · v2 dS.

Throughout this thesis, the induced norm on L2(S2) is denoted by | · |. For other inner product
spaces, say V with inner product (·, ·)V , the associated norm is denoted by | · |V .
The following identities hold for appropriate real valued scalar functions and vector fields on
S2, see (2.4)-(2.6) [64]:

(∇ψ, v) = −(ψ, divv), (3.17)
(Curl ψ, v) = (ψ, curl v), (3.18)

(Curlcurl w, z) = (curl w, curl z). (3.19)
In (3.18), the L2(S2) inner product is used on the left hand side while the L2(S2) is used on the
right hand side. Throughout this thesis, we identify a normal vector field w with a scalar field
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w and by w = x̂w and hence we put
(ψ,w) := (ψ,w)L2(S2), if w = x̂w, ψ,w ∈ L2(S2). (3.20)

Let us now introduce the Sobolev spaces H1(S2) and H1(S2) of scalar functions and vector fields
on S2. Let ψ be a scalar function and let u be a vector field on S2, respectively. For s ≥ 0 we
define

|ψ|2H1(S2) = |ψ|2L2(S2) + |∇ψ|2L2(S2), (3.21)
and

|u|2H1(S2) = |u|2 + |∇ · u|2 + |Curlu|2 . (3.22)
One has the following Poincaré inequality

λ1|u| ≤ |divu| + |Curlu|, u ∈ H1(S2), (3.23)
where λ1 > 0 is the first positive eigenvalue of the Laplace-Hodge operator, see below. By the
Hodge decomposition theorem in Riemannian geometry [31], the space of C∞ smooth vector
field on S2 can be decomposed into three components:

C∞(TS2) = G ⊕ V ⊕ V,
where

G = {∇ψ ∈ C∞(S2), V = {Curlψ ∈ C∞(S2),
and H is the finite-dimensional space of harmonic vector fields. Since the sphere is simply
connected, that is, the map S2 → S2 is a diffeomorphism and so H = {0}. The condition of
orthogonality to H is dropped out. We introduce the following spaces

H := {u ∈ L2(S2) : ∇ · u = 0},
V := H ∩ H1(S2).

In other words, H is the closure of the
{u ∈ C∞(TS2) : ∇ · u = 0}

in the L2 norm |u| = (u, u)1/2, where u = (uθ, uφ) and
(u, v) =

∫
S2
uθ(x)vθ(x)dx, (3.24)

and the space V is the closure of
{u ∈ C∞(TS2) : ∇ · u = 0}
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in the norm of H1 (S2). Since V is densely and continuously embedded into H and H can be
identified with its dual H ′, one has the following Gelfand triple:

V ⊂ H ∼= H ′ ⊂ V ′. (3.25)

3.1.3 Stokes operator
We will recall first that the Laplace-Beltrami operator on S2 can be defined in terms of spherical
harmonics Yl,m as follows. For θ ∈ [0, π], φ ∈ [0, 2π), we define

Yl,m(θ, φ) =
[ (2l + 1)(l − |m|)!

4π(l + |m|)!
]1/2

Pm
l (cos θ)eimφ, m = −l, · · · , l, (3.26)

with Pml being the associated Legendre polynomials. The family {Yl,m : l = 0, 1, . . . , m = −l, . . . , l}
form an orthonormal basis in L2 (S2) and then we can define the Laplace-Beltrami operator
putting

∆Yl,m = −l(l + 1)Yl,m
, and then extending by linearity to all functions f : L2 (S2) such that

∞∑
l=0

l∑
m=−l

l2(l + 1)2 (f ,Yl,m)2L2(S2) < ∞ .

We consider the following linear Stokes problem, that is given f ∈ V ′, find v ∈ V such that
νCurlcurlu − 2νRic(u) + ∇p = f , ∇ · u = 0. (3.27)

By taking the inner product of the first equation above with a test field v ∈ V and then use
(3.19), the pressure term drops and we obtain

ν(curlu, curlv) − 2ν(Ricu, v) = (f , v) ∀ v ∈ V .
Next, define a bilinear form a : V × V → R by

a(u, v) := (curlu, curl v) − 2(Ricu, v), u, v ∈ V . (3.28)
In view of (3.22) and the formula (3.16) for the Ricci tensor on S2, the bilinear form a satisfies

a(u, v) ≤ |u|H1 |v|H1 (3.29)
and so it is continuous on V . So, by the Riesz representation theorem, there exists a unique
operator A : V → V ′ where V ′ is the dual of V , such that a(u, v) = (Au, v), for u, v ∈ V .
Invoking the Poincaré inequality (3.23) we find that a(u, u) ≥ α|u|2V , for a certain α > 0, which
implies that a is coercive in V . Hence by the Lax-Milgram theorem the operator A : V → V ′
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is an isomorphism. Let A be a restriction of A to H :⎧⎨
⎩

D(A) := {u ∈ V : Au ∈ H},
Au := Au, u ∈ D(A). (3.30)

It is well known (see for instance [102], Theorem 2.2.3 ) that A is positive definite, self-adjoint
in H and D(A1/2) = V with equivalent norms. Furthermore, for some positive constants c1, c2
we have

c1|u|D(A) ≤ |Au| ≤ c2|u|D(A) ,
⟨Au, u⟩ = ((u, u)) = |u|V = |∇u|2 = |Du|2, u ∈ D(A). (3.31)

The spectrum of A consists of an infinite sequence of eigenvalues λl . Using the stream function
ψl for which Zlm = Curlψl,m and identities (3.15), one can show that each λl are in fact the
eigenvalues of the Laplace-Beltrami operator ∆, that is λl = l(l + 1), and there exists an
orthonormal basis (Zl,m)l≥1 of H consisting of eigenvector of A, where

Zl,m = λ−1/2
l CurlYl,m, l = 1, . . . ,m = −l, . . . , l, (3.32)

Therefore, for any v ∈ H , one has,

v =
∞∑
l=1

l∑
m=−l

v̂l,mZl,m, v̂l,m =
∫
S2
v · Zl,mdS = (v,Zl,m). (3.33)

An equivalent definition of the operator A can be given using the so-called Leray-Helmhotz pro-
jection P that is defined as an orthogonal projection from L2(S2) onto H , called Leray-Helmhotz
projection. Let H2(S2) denote the domain of the Laplace-Hodge operator in H endowed with
the graph norm. It can be shown in [60] that D(A) = H2(S2) ∩ V and A = −P(∆ + 2Ric).
Therefore, we obtain an equivalent definition of the Stokes operator on the sphere.

Definition 3.1.3. The Stokes operator A on the sphere is defined as
A : D(A) ⊂ H → H, A = −P(∆ + 2Ric), D(A) = H2(S2) ∩ V , (3.34)

where ∆ is the Laplace-De Rham operator.
It can be shown that V = D(A1/2) when endowed with the norm |x|V = |A1/2x| and the inner
product ((x, y)) = ⟨Ax, y⟩. After identification of H with its dual space we have V ⊂ H ⊂ V ′

with continuous dense injection. The dual pairing between V and V ′ is denoted by (·, ·)V×V ′.
Moreover, there exist positive constants c1, c2 such that

c1|u|2V ≤ (Au, u) ≤ c2|u|2V , u ∈ D(A).
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Let us now introduce the Sobolev spaces Hs(S2) and H2(S2) of scalar functions and vector fields
on S2. Let ψ be a scalar function and let u be a vector field on S2, respectively. For s ≥ 0 we
define

|ψ|2Hs(S2) = |ψ|2L2(S2) + |(−∆)s/2ψ|2L2(S2), (3.35)
and

|u|2Hs(S2) = |u|2 + |(−∆)s/2u|2, (3.36)
where ∆ is the Laplace-Beltrami operator and ∆ is the Laplace-de Rham operator on the
sphere. Note that, for k = 0, 1, 2, · · · and θ ∈ (0, 1) the space Hk+θ(S2) can be defined as
the interpolation space between Hk(S2) and Hk+1(S2). One can apply the same procedure for
Hk+θ(S2), [20]. The fractional power As/2 of the Stokes operator A in H for any s ≥ 0 is given
by

D(As/2) =
{
v ∈ H : v =

∞∑
l=1

l∑
m=−l

v̂l,mZl,m,
∞∑
l=1

l∑
m=−l

λsl |v̂l,m|2 < ∞
}
,

As/2v :=
∞∑

m=1

l∑
m=−l

λs/2
l v̂l,mZl,m ∈ H.

The Coriolis operator C1 : L2(S2) → L2(S2) is defined by the formula1

(C1v)(x) = 2Ω(x × v(x))cosθ, x ∈ S2. (3.37)
It is clear from the above definition that C1 is a bounded linear operator defined on L2(S2).
In the sequel we will need the operator C = PC1 which is well defined and bounded in H.
Furthermore, for u ∈ H ,

(Cu, u) = (C1u,Pu) =
∫
S2

2Ωcosθ((x × u) · u(x))dS(x) = 0. (3.38)
In addition,

Lemma 3.1.4. For any smooth function u and s ≥ 0
(Cu,Asu) = 0. (3.39)

Proof. The case s = 0 is obvious as in the line above, due to the fact (ω×u) ·u = 0. For s > 0
we refer readers to Lemma 5 in [99]. !

1The angular velocity vector of earth is denoted as Ω in consistant to geophysical fluid dynamics Literature. It
shall not be confused with the notation for probility space Ω used in this thesis.
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Let X = H ∩ L4 (S2) be endowed with the norm
|v|X = |v|H + |v|L4(S2).

Then X is a Banach space. It is known that the Stokes operator A generates an analytic C0-
semigroup {e−tA}t≥0 in X (see Theorem A.1 in [14]). Since the Coriolis operator C is bounded
on X we can define in X an operator

Â = νA + C, D(Â) = D(A),
with ν > 0.

Lemma 3.1.5. Suppose that V ⊂ H ∼= H ′ ⊂ V ′ is a Gelfand triple of Hilbert spaces. If a
function u being L2(0,T ; V ) and ∂tu belongs to L2(0,T ; V ′) in weak sense, then u is a.e. equal
to a continuous function from [0,T] to H , the real function |u|2 is absolutely continuous and,
in the weak sense one has

∂t|u(t)|2 = 2⟨∂tu(t), u(t)⟩ (3.40)

Proposition 3.1.6. The operator Â with the domain D(Â) = D(A) generates a strongly con-
tinuous and analytic semigroup {e−tA}t≥0 in X. In particular, there exist M ≥ 1 and µ > 0
such that

|e−tÂ|L(X,X) ≤ Me−µt , t ≥ 0 , (3.41)
and for any δ > 0 there exists Mδ ≥ 1 such that

|Âδe−tÂ|L(X,X) ≤ Mδt−δe−µt , t > 0. (3.42)
Proof. The proof can be found in [14] (the proof of Proposition 5.3). Nevertheless, we include
the proof here for readers’ convenience. Since A is the infinitesimal generator of the analytic
C0-semigroup in X, C is the bounded linear operator on X, then by Theorem A.1 [14] and
Corollary 2.2 on p.81 of [86] we infer that operator Â is a generator of another analytic C0
semigroup on X. Suppose u(t) = e−t(νA+C)u0 for some u0 ∈ V ⊂ X. Let us first show that∫ ∞

0
|u(t)|2dt =

∫ ∞

0
|e−t(νA+C)u0|2L2(S2) dt < ∞. (3.43)

By Lemma 3.1.5 and identity (3.38), we have
1
2
d
dt |u(t)|2 = (u′(t), u(t)) = −(νAu, u) − (Cu, u) = −ν|u|2V .
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Hence
1
2
d
dt |u(t)|2 + ν|u|2V = 0. (3.44)

Since |u|2V = |A1/2u|2 ≥ λ1|u|2 by Lemma 3.23, we obtain
d
dt |u(t)|2 ≤ −2λ1ν|u(t)|2.

Using the Gronwall inequality, we obtain |u(t)|2 ≤ e−2λ1νt |u0|2 for u0 ∈ H2(S2), hence for all
u0 ∈ X, the claim (3.43) follows.
Now integrate (3.44) from 0 to T we have

|u(T)|2 + 2ν
∫ T

0
|u(t)|2Vdt = |u(0)|2.

It is clear that ∫ ∞

0
|u(t)|2V < ∞ (3.45)

as T → ∞ for all u0 ∈ H. Using the interpolation inequality in p.12 [66], the Cauchy-Schwartz
inequality and the previous three inequalities we obtain that

∫ ∞

0
|u(t)|2L4dt ≤

(∫ ∞

0
|u(t)|2L2dt

) 1
2 (∫ ∞

0
|u(t)|2Vdt

) 1
2 < ∞.

Invoking Theorem 4.1 on p.116 [86] with X = H ∩L4(S2) we conclude that |e−tÂ|L(X,X) ≤ Me−µt

for some constants M ≥ 1 and µ > 0. Finally, using Theorem 6.13 on p.74 of [86] with
X = H ∩ L4(S2), the conclusion in (3.42) follows. !

Now consider the trilinear form b on V × V × V , defined as

b(v,w, z) = (∇vw, z) =
∫
S2

∇vw · zdS = πx
3∑

i,j=1
vjDiwjzjdx, v,w, z ∈ V . (3.46)

Via the identity [14],
2∇wv = −curl(w × v) + ∇(w · v) − v div w + w div v − v × curl w − w × curl v,

and equation (3.14), one can write the divergence free fields v,w, z, the trilinear form can be
written as

b(v,w, z) = 1
2
∫
S2

[−v × w · curl z + curl v ×w · z − v × curl w · z]dS. (3.47)
Moreover,

b(v,w,w) = 0, b(v, z,w) = −b(v,w, z), v ∈ V , w, z ∈ H1(S2), (3.48)
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and such that
|B(u, v), w| = |b(u, v,w)| ≤ c|u||w|(|curl v|L∞(S2) + |v|L∞(S2)), u ∈ H, v ∈ V , w ∈ H, (3.49)

|B(u, v), w| = |b(u, v,w)| ≤ c|u|1/2|u|1/2
V |v|1/2|v|1/2

V |w|V , u, v, w ∈ V , (3.50)

|B(u, v), w| = |b(u, v,w)| ≤ c|u|1/2|u|1/2
V |v|1/2

V |Au|1/2|w|, ∀u ∈ V , v ∈ D(A), w ∈ H, n = 2,
(3.51)

|b(u, v,w)| ≤ c|u|L4(S2)|v|V |w|L4(S2), v ∈ V , u,w ∈ H1(S2). (3.52)
In view of (3.50),

sup
z∈V ,|z|V ̸=0

|(B(u, v), z)|
|z|V = |B(u, v)|V ′ ≤ c|u|1/2|u|1/2

V |v|1/2|v|1/2
V

KB |B(u, u)|V ′ ≤ c|u||u|V , (3.53)
|B(u, u)|H ≤ c|u||u|V .

sup
z∈H,|z|H ̸=0

|(B(u, v), z)|
|z|H = |B(u, v)|H ≤ c|u|1/2|u|1/2

V |v|1/2|v|1/2
V

KB |B(u, u)|H ≤ c|u||u|V . (3.54)
In view of (3.51),

sup
z∈H,|z|H ̸=0

|(B(u, v), z)|
|z|H = |B(u, v)|H ≤ c|u|1/2|u|1/2

V |u|1/2|Au|1/2

KB |B(u, u)|H ≤ c|u|1/2|u|V |Au|1/2 ≤ c|u|1/2
V |u|V |Au|1/2 ∀ u ∈ D(A). (3.55)

In view of (3.52), b is a bounded trilinear map from L4(S2) × V × L4(S2) to R.

Lemma 3.1.7. The trilinear map b can be uniquely extended from V × V × V to a bounded
three-linear map

b : (L4(S2) ∩ H) × L4(S2) × V → R .
Finally, we recall the interpolation inequality (See [66], p.12),

|u|L4(S2) ≤ C|u|1/2
L2(S2)|u|1/2

V . (3.56)
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Inequality (3.50) is deduced from the following Sobolev embedding
H1/2 = W 1/2,2(S2) ↪2 L4(S2).

Then using (3.14), (3.17), (3.30) and (3.47), we arrive with the weak solution of the Navier-Stokes
equations (3.3), which is a vector field u ∈ L2([0,T]; V ) with u(0) = u0 that satisfies the weak
form of (3.3):

(∂tu, v) + b(u, u, v) + ν(curlu, curlv) − 2ν(Ric u, v) + (Cu, v) = (f , v), v ∈ V , (3.57)
where the bilinear form B : V × V → V ′ is defined by

(B(u, v), w) = b(u, v,w) =
3∑

i,j=1

∫
S2
ui ∂(vk)j

∂xi ujdx, w ∈ V . (3.58)

With a slight abuse of notation, we denote B(u) = B(u, u) and B(u) = π(u,∇u).

3.2 Stochastic Navier-Stokes equations on the 2D unit sphere
By adding a Lévy white noise to (3.2), we obtain the main equation in this thesis.

∂tu + ∇uu − νLu + ω × u + ∇p = f + η(x, t), (3.59)
div u = 0, u(x, 0) = u0, x ∈ S2. (3.60)

We assume that, u0 ∈ H , f ∈ V ′ and η(x, t) is the so-called Lévy white noise, that is a noise
process which can be informally described as the derivative of an H-valued Lévy process,
that is rigorously defined in Lemma 3.2.7. Applying the Leray-Helmholz projection we can
interpret equation (3.59) as an abstract stochastic equation in H

du(t) + Au(t) + B(u(t), u(t)) + Cu = fdt + GdL(t), u(0) = u0, (3.61)
where L is an H-valued stable Lévy process and G : H → H is a bounded operator. In order
to study this equation we need to consider first some properties of the stochastic convolution.

3.2.1 Stochastic convolution of β-stable noise
In this section we will study a linear version of equation (3.61)

dz(t) + Az(t) + Cz = GdL(t), z(0) = 0 . (3.62)
Under appropriate assumptions formulated below its solution takes the form

zt =
∫ t

0
e−Â(t−s)GdL(s), (3.63)
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where Â = A + C. Let W be a cylindrical Wiener process on a Hilbert space K continuously
imbedded into H and let X be a β/2-stable subordinator. Then the process L = W (X) is a
symmetric cylindrical β-stable process in H . Assume that G : H → H is γ-radonifying. Then
the process GL is a well defined Lévy process taking values in H . Under these assumptions
the process z defined by (3.63) is a well defined H-valued process and moreover, it can be
considered as a solution to the following integral equation

z(t) = −
∫ t

0
e−(t−s)ACz(s)ds +

∫ t

0
e−(t−s)AG dL(s) (3.64)

With some abuse of notation, we will denote now by λl the eigenvalues of the Stokes operator
A taking into account their mulitplicities that is λ1 ≤ λ2 ≤ · · · , and by el the corresponding
eigenvectors that form an orthonormal basis in H . We will impose a stronger condition on
the operator G :

Gel = σlel, l = 1, 2, . . . .
We will consider the process

z0
t =

∫ t

0
e−(t−s)AGdL(s) =

∞∑
l=1

z0
l (t)el,

where
z0
l (t) =

∫ t

0
e−λl(t−s)σldLl(s). (3.65)

Lemma 3.2.1. Suppose that there exists some δ > 0 such that ∑l≥1 |σl|βλβδl < ∞. Then for
all p ∈ (0, β),

E|AδL(t)|p ≤ C(β, p)
(∑

l≥1
|σl|βλβδl

) p
β

t pβ < ∞. (3.66)

Proof. Let L(t) = ∑
l≥1 Lltel , t ≥ 0 be the cylindrical β-stable process on H , where el is the

complete orthonormal system of eigenfunctions on H and L1,L2, · · · ,Ll are i.i.d. R-valued,
symmetric β-stable process on a common probability space (Ω,F,P). Now take a bounded
sequence of real number σ = (σl)l∈N, let us define

Gσ : H → H ; Gσu :=
∞∑
l=1

σl⟨u, el⟩el,

and σl are chosen such that

GσL(t) =
∞∑
l=1

σl⟨Ll(t), el⟩el =
∞∑
l=1

σlLl(t)el.
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To show (3.66), we follow the argument in the proof of Lemma 3.1 in [115] and Theorem 4.4
in [90]. Take a Rademacher sequence {rk}k≥1 in a new probability space (Ω′,F′,P′), that is,
{rk}k≥1 are i.i.d. with P{rk = 1} = P{rk = −1} = 1

2 . By the following Khintchine inequality:
for any p > 0, there exists some C(p) > 0 such that for arbitrary real sequence {hl}l≥1,

(∑
l≥1

h2
l

)1/2
≤ C(p)

(
E′|∑

l≥1
rlhl|p

)1/p
.

Via this inequality, we get

E|AδL(t)|q = E
(∑

l≥1
λ2δ
l |σl|2|Ll(t)|2

)p/2

≤ CEE′
∣∣∣∣∣
∑
l≥1

rlλδl |σl||Ll(t)|
∣∣∣∣∣
p

= CE′E
∣∣∣∣∣
∑
l≥1

rlλδl |σl||Ll(t)|
∣∣∣∣∣
p
,

where C = Cp(p). For any λ ∈ R, by the fact of |rk| = 1 and formula (4.7) of [90],

E exp
{
iη∑

l≥1
rlηδl |σl|Ll(t)

}
= exp

{
−|η|δ∑

l≥1
|σl|βλβδl t

}
.

Now we know that any symmetric β-stable r.v. X ∼ S̃α(σ, 0, 0) satisfies
EeiηX = e−σβηβ

for some β ∈ (0, 2), η ∈ R, then for any p ∈ (0, β),
E|X|p = C(β, p)σp.

Since ∑l≥1 |σl|βλβδl < ∞ , (3.66) holds. !

Lemma 3.2.2 (p.3714, [115]). Suppose that there exists δ > 0 such that
∞∑
l=1

|σl|βλβδl < ∞ .

Then for all p ∈ (0, β) and T > 0
E sup

0≤t≤T
|Aδzt|p ≤ C

(
1 + Tp(1−δ)

)
Tp/β (3.67)
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Proof. It is proved in [115] that for p > 1
E sup

0≤t≤T
|Aδzt|p ≤ CTp/β . (3.68)

In order to prove the lemma for the process z, we use formula (3.64). Let Z = z − z0. Then
(3.64) yields

dZ
dt = −AZ − C (Z + z0) = −ÂZ − Cz0, Z(0) = 0 .

Therefore,
Z(t) = −

∫ T

0
e−(t−s)ÂCz0(s)ds, t ≥ 0 .

Then, by the properties of analytic semigroups we find that
∣∣∣ÂδZ(t)

∣∣∣ ≤
∫ t

0

∣∣∣Âδe−(t−s)Â
∣∣∣ ∣∣Cz0(s)∣∣ ds

≤ sup
s≤t

∣∣Cz0(s)∣∣
∫ t

0
c

(t − s)δ ds
≤ c1t1−δ sup

s≤t

∣∣Cz0(s)∣∣

≤ c1|C|t1−δ sup
s≤t

∣∣z0(s)∣∣ .

Since C is bounded, we have D
(

Â
)

= D(A) by Theorem 2.11 in [86]. Since A ≥ 0 is selfadjoint,
the domains of fractional powers can be identified as the complex interpolation spaces, see
Section 1.15.3 of [107]. Therefore, D (Aδ) = D

(
Âδ
)

for every γ ∈ (0, 1), which yields the
existence of constants, r1, r2 depending on δ only, such that

r1
∣∣∣Âδx

∣∣∣ ≤ ∣∣Aδx∣∣ ≤ r2
∣∣∣Âγx

∣∣∣ , x ∈ D (Aγ) .
Using (3.68) we find that

E sup
t≤T

∣∣AδZ(t)∣∣p ≤ cp1rp2 |C|pTp(1−δ)E sup
s≤T

∣∣z0(s)∣∣p < ∞.

Now the lemma follows since z(t) = Z(t) + z0(t).
Finally, for completeness we prove the case p ∈ (0, 1) for the process z0. As (3.67) is proved
for q ∈ (1, β) we fix q ∈ (1, β) and then

E
(

sup
0≤t≤T

|Aδz0
t |q
)

≤ CTq/β.

Using the Hölder inequality (see for instance [62], p.191) one has that, that is
E(|X|p · 1) ≤ (EXpq)1/q.
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We then have
E
(

sup
0≤t≤T

|Aδz0
t |p
)

= E
({

sup
0≤t≤T

|Aδz0
t |
}p)

≤ E
({

sup
0≤t≤T

|Aδz0
t |
}pq)1/q

≤ E
({

sup
0≤t≤T

|Aδz0
t |
}q)p/q

≤ (C1Tq/β)p/q

= Cp/q
1 Tp/β

≤ CTp/β.
!

Proposition 3.2.3. [p110,[90]] Suppose ∑l≥1
σβl
λ+α < ∞, then for any 0 < p < β, t ≥ 0,

E|z0
t |p ≤ c̃p

( ∞∑
l=1

|σl|β 1 − e−β(λl+α)t

β(λl + α)
)p/β

,

where cp depends on p and β. Moreover, as α → ∞,
E|z0

t |p → 0
Proof. Under same theme of the proof of Lemma 3.2.1, we follow the argument in the proof
of Theorem 4.4 in [90] to complete the proof. Let z0t be the solution of

dz0
t + (A + αI)z0

t = GdL(t), z0(0) = 0
which has the expression

z0
t =

∫ t

0
S(t − s)GdL(s)

=
∞∑
l=1

(∫ t

0
e−(λl+α)(t−s)σldLl

s

)
el,

where we used the notation S(t) = e−t(A+αI). Take a Radamacher sequence {rk}k≥1 in a new
probability space (Ω′,F′,P′), that is (Ω′,F′,P′), that is {rl}l≥1 are i.i.d. with P(rl = 1) = P(rl =
−1) = 1

2 . By the following Khintchine inequality: for any p > 0, there exists some cp > 0 such
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that for any arbitrary real sequence {cl}l∈N,
(∑

l≥1
c2
l

)1/2
≤ cp

(
E′|∑

l≥1
rlcl|p

)1/p
,

where cp depends only on p.
Now fix ω ∈ Ω, t ≥ 0, write

(∑
l≥1

|z0
l (t, ω)|2

)1/2
≤ cp(E′|∑

l≥1
rlz0

l (t, ω)|p)1/p.

Then

E|z0
t |p =

( ∞∑
l=1

|
∫ t

0
e−(λl+α)(t−s)σldLl

s|2
) p

2

≤ cppE
(
E′|

∞∑
l=1

rlz0
l (t)|p

)
= cppE′

(
E|∑

l=1
rlzlt|p

)
= cppE′

(
E|

∞∑
l=1

rl
∫ t

0
e−(λl+α)(t−s)σldLl

s|p
)
.

For any t ≥ 0, κ ∈ R using the fact |rl| = 1, l ≥ 1 and formula (4.7) in [90],

Eeiκ∑l≥1 rlz0l (t) = e−|κ|β∑
l≥1

|σl|β
∫ t

0
e−β(λl+α)(t−s)ds.

Now we use (3.2) in [90]: If X is a symmetric β-stable r.v. with distribution S(β, γ, 0) satisfying
EeiκX = e−γβ |κ|β

for some β ∈ (0, 2) and any κ ∈ R, then for any p ∈ (0, β), one has
EXp = C(β, p)γp.

Since ∑l≥1
σβl
λl+α < ∞, the assertion follows. Furthermore, E|zt|0p → 0 as α → ∞. !

Now we present a Lemma that allows us to claim that the solution of SNSE has càdlàg trajec-
tories. The proof follows closely with Lemma 3.3 in [115].

Lemma 3.2.4. Assume that for a certain δ ∈ [0, 1)
∞∑
l=1

|σl|βλβδl < ∞ .

Then the process z defined by (3.65) has a version in D ([0,∞]; D (Aδ))

Proof. By Lemma 3.2.2 we have
E sup

0≤t≤T
|Aδzt|p < ∞
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for any p ∈ (0, β). Now, by Theorem 2.2 in [75] z0 has a càdlàg modification2 in V . By
representation (3.64) the process z is càdlàg as well and the proof of Lemma is completed. !

We still study the γ- radonifying, property, that is equation (2.2) introduced in Chapter 2 of the
operator (I − ∆)−s.

Lemma 3.2.5. Let ∆ denotes the Laplace-de Rham operator on S2 and q ∈ (1,∞). Then the
operator

(−∆ + 1)−s : H → Lq(S2) is γ − radonifying iff s > 1/2.
Proof. Let us choose and fix q ∈ (1,∞). Let us recall that all the distinct eigenvalues of −∆+1
are λl + 1 = l(l + 1) + 1, l = 0, 1, · · · , and the correspnding eigenfunctions are given by the
divergence free vector spherical harmonic Yl,m for |m| ≤ l, l ∈ N (p.216 [111]). Let us recall
also the addition theorem for vector spherical harmonic

∑
|m|≤l

|Yl,m(x)|2 = 2l + 1
4π Pl(1), x ∈ S2.

Now, it is clear that

E

∣∣∣∣∣∣
∑
l=0

(l(l + 1) + 1)−s ∑
|m|≤l

Yl,m(x)
∣∣∣∣∣∣

q

Lq

=
∫
S2
E

∣∣∣∣∣∣
∑
l=0

(l(l + 1) + 1)−s ∑
|m|≤l

Yl,m(x)
∣∣∣∣∣∣

q

dS(x)

≃ cq
∫
S2

(∑
l=0

(l(l + 1) + 1)−2s 2l + 1
4π Pl(1)

)q/2
dS(x)

converges if and only if s > 1
2 . !

Let X = L4(S2) ∩ H be the Banach space endowed with the norm
|x|X = |x|H + |x|L4(S2).

It follows from Lemma 3.2.5 that the operator
A−s : H → X is γ − radonifying iff s > 1/2. (3.69)

We need the OU process to take value in X, to this end, we need the following assumption.
2Modification with càdlàg path.
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Definition 3.2.6. Let K and X be separable Banach spaces and let γK be the canonical cylin-
drical (finitely additive) Gaussian measure on K. A bounded linear operator U : K → X is said
to be γ-radonifying iff U(γK) is a Borel Gaussian measure on X.
One has to choose X wisely, so that U : K → X is γ-radonifying (in checking validifty of
subordinator condition (2.12) The following is our standing assumption.

Assumption 1 A continuously embedded Hilbert space K ⊂ H ∩ L4 is such that for any
δ ∈ (0, 1/2),

A−δ : K → H ∩ L4 is γ-radonifying. (3.70)
It follows from (3.69) that K = D(As) for some s > 0, then assumption 1 is satisfied.

Remark. Under the above assumption, we have the facts K ⊂ H and Banach space X is taken
as H ∩ L4. In fact, space K := Q1/2(W ) is the RKHS of noise W (t) on H ∩L4 with inner product
⟨·, ·⟩K = ⟨Q−1/2x,Q−1/2y⟩W , x, y ∈ K. The notation Q denotes the covariance of the noise W .
Note: The parameters used in Lemma 3.2.5 and Assumption 1 are independent. In the first
case, we start with the whole space, a smaller exponent is required to map onto H ∩ L4(S2),
so the assumption s > 1/2 justifies. While in Assumption 1, we start with a smaller space, a
bigger exponent is required to map onto H ∩ L4(S2), so δ ∈ (0, 1/2).

Corollary 1. In the framework of Proposition 3.1.6, let us additionally assume that there
exists a separable Hilbert space K ⊂ X such that the operator A−δ : K → X is γ-radonifying
for some δ ∈ (0, 1

2 ). Then
∫ ∞

0
|e−tA|2R(K,X)dt < ∞.

Proof. Since e−tA = Aδe−tAA−δ , it follows by Neidhardt [81] that
|e−tA|R(K,X) ≤ |Aδe−sA|L(X,X)|A−δ|R(K,X),

and then Proposition 3.1.6 yields finiteness of the integral. !

Let us recall what one means by M-type p Banach space [17]. Suppose p ∈ [1, 2] is fixed, the
Banach space E is called as type p, iff there exists a constant Kp(E) > 0 such that for any finite
sequence of symmetric independent identically distributed r.v. ξ1, · · · , ξn : Ω → [−1, 1], n ∈ N,
and any finite sequence x1, · · · , xn from E , satisfying

E
∣∣∣∣∣

n∑
i=1

ξixi
∣∣∣∣∣
p

≤ Kp(E)
n∑
i=1

|xi|p.
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Moreover, a Banach space E is of martingale type p iff there exists Lp(E) > 0 such that for
any E-valued martingale {Mn}Nn=0 the following holds

sup
n≤N

E|Mn|p ≤ Lp(E)
N∑
n=0

E|Mn − Mn−1|p.

Lemma 3.2.7 (Corollary 8.1,[23]). Assume that p ∈ (1, 2], X is a subordinator Lévy process
from the class Sub(p), E is a separable type p Banach space, U is a separable Hilbert space,
E ⊂ U and W = (W (t), t ≥ 0) is an U-valued Wiener process.
Define a U-valued Lévy process as

L(t) = W (X(t)), t ≥ 0 .
Then the E-valued process

z(t) =
∫ t

0
e−(t−s)(A+αI)dL(s)

is well defined. Moreover, with probability 1, for all T > 0,
∫ T

0
|z(t)|pEdt < ∞,

∫ T

0
|z(t)|4L4 .dt < ∞

The following existence and regularity result is a version of the result in [23].

Theorem 3.2.8. Let the process L be defined in the same way as in Lemma 3.2.7. Assume
that one of the following conditions is satisfied:

(i) p ∈ (0, 1] or
(ii) the Banach space E is separable of martingale type p for a certain p ∈ (1, 2].

Then the process

zα(t) =
∫ t

−∞
e−(t−s)(Â+αI)dL(s) (3.71)

is well defined in E for all t > 0. Moreover, if p ∈ (1, 2], then the process z of (3.71) is càdlàg.

Proof. As S = (S(t), t ≥ 0) is a C0 semigroup in the separable martingale type p-Banach space
E , there exists a Hilbert space H as the reproducing Kernel Hilbert space of W (1) such that
the embedding i : H ↪2 E is γ-radonifying. The proof of this theorem is a straight application
of Theorem 4.1 and 4.4 in [23]. !
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In order to obtain well-posedness of the SNSE 3.59, one need some regularity on the noise
term. Fortunately, this becomes attainable using Lemma 3.2.7 . In view of this, we construct
the driving Lévy noise L = L(t) by subordinating a cylindrcial Wiener process W on a Hilbert
space H . Let {W lt , t ≥ 0} be a sequence of independent standard one-dimensional Wiener
process on some given probability space (Ω,F,P). The cylindrical Wiener process on H is
defined by

W (t) := ∑
l

W l
t el,

where el is the complete orthonormal system of eigenfunctions on H .
For β ∈ (0, 2), let X(t) be an independent symmetric β/2-stable subordinator, that is, an increas-
ing one dimensional Lévy process with Laplace Transform

Ee−rX(t) = e−t|r|β/2, r > 0
The subordinated cylindrical Wiener process {L(t), t ≥ 0} on H is defined by

L(t) := W (X(t)), t ≥ 0.
Note in general that L(t) does not belongs to H. More precisly, L(t) lives on some larger Hilbert
space U with the γ-radonifying embedding H ↪2 U . In this chapter we consider abstract Itô
equation in (3.61) (which we restate here) in H = L2(S2) :

du(t) + νAu(t)dt + B(u(t), u(t))dt + Cu = fdt + GdL(t), u(0) = u0. (3.72)
Write (3.61) into the usual mild form one has

u(t) = S(t)u0 −
∫ t

0
S(t − s)B(u(s))ds +

∫ t

0
S(t − s)fds +

∫ t

0
S(t − s)GdL(s). (3.73)

where S(t) is an analytic C0 semigroup (e−tÂ) generated by Â = νA + C, where A is the
Stokes operator in H . Note that Â is a strictly positive selfadjoint operator in H (that is
A : D(A) ⊂ H → H , Â = Â∗ > 0, ⟨Av, v⟩ ≥ γ|v|2 for any v ∈ D(A) for some γ > 0 and v ̸= 0).
The operator G : H → H is a bounded linear operator. For a fixed α > 0 we introduce the
process

zα(t) :=
∫ t

0
e−(t−s)(α+Â)GdL(t)

that solves the OU equation
dzα + (νA + C + α)zαdt = GdL(t), t ≥ 0 . (3.74)
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Now let v(t) = u(t) − zα(t). Then⎧⎨
⎩
dv(t) + νA(u(t) − zα(t))dt + B(u(t))dt + C(u − zα(t))dt − αzα(t)dt = fdt,
v(0) = v0.

The problem becomes⎧⎨
⎩
dv(t) + νAv(t)dt + B(v(t) + zα(t))dt + Cv(t)dt − αzα(t)dt = fdt,
v(0) = v0.

Convert into standard form,⎧⎨
⎩

d+
dt v(t) + (νA + C)v(t) = f − B(v(t) + zα(t)) + αzα(t),
v(0) = v0,

(3.75)

where d+v
dt is the right-hand derivative of v(t) at t . Solution to equation (3.75) will be understood

in the mild sense, that is as a solution to the integral equation

v(t) = S(t)v(0) +
∫ t

0
S(t − s)(f − B(v(s) + zα(s)) + αzα(s))ds, (3.76)

with v0 = u0−zα(0). One can easily show that (3.75) and (3.76) are equivalent for v ∈ C(0,∞; V )∩
L2loc(0,∞; D(A)). More precisely, (3.76) follows from (3.75) via integration. Then (3.75) follows
from (3.76) via the usual continuity argument (see Lebesgue Dominated Convergence Theorem
in Appendix), namely, differentiation the integral when integrand is continuous.
For brevity, we write zα as z. Let us now explain what is meant by a solution of (3.61).

Definition 3.2.9. Suppose that z ∈ L4loc([0,T);L4(S2) ∩ H), v0 ∈ H , f ∈ V ′. A weak solution to
(3.61) is a function v ∈ C([0,T); H) ∩ L2loc([0,T); V ) satisfies (3.75) in weak sense for any φ ∈ V ,
T > 0,

∂t(v, φ) = (v0, φ) − ν(v,Aφ) − b(v + z, v + z, φ) − (Cv, φ) + (αz + f , φ). (3.77)
Equivalently, (3.75) holds as an equality in V ′ for a.e. t ∈ [0,T].
Now if f ∈ H , and the following regularity is satisfied,

v ∈ L∞(0,T ; V ) ∩ L2(0,T ; D(A)), (3.78)
then the solution becomes strong. More precisely,

Definition 3.2.10 (Strong solution). Suppose that z ∈ L4loc([0,T);L4(S2) ∩ H), v0 ∈ V , f ∈ H . We
say that u is a strong solution of the stochastic Navier-Stokes equations (3.61) on the time
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interval [0,T] if u is a weak solution of (3.61) and in addition
u ∈ L∞(0,T ; V ) ∩ L2(0,T ; D(A)). (3.79)

3.2.2 A summary of main theorems
In this subsetcion we state the main theorems proved in this chapter are the following.

Theorem 3.2.11. Suppose that α ≥ 0, z ∈ L4loc([0,∞);L4(S2) ∩ H), v0 ∈ H and f ∈ V ′. Then
there exists a unique solution v of equation (3.75). In particular, if

∞∑
l=1

|σl|βλβ/2
l < ∞ ,

then z ∈ L4loc([0,∞);L4(S2) ∩ H).

Next, we show the weak solution depends continuously on initial data, noise and forcing terms.

Theorem 3.2.12. Assume that,
u0
n → u in H,

and for some T > 0,
zn → z in L4([0,T];L4(S2) ∩ H) fn → f in L2(0,T ; V ′). (3.80)

Let us denote by v(t, z)u0 the solution of (3.75) and by v(t, zn)u0n the solution of (3.75) with
z, f , u0 being replaced by zn, fn, u0n. Then

v(·, zn)u0
n → v(·, z)u0 in C([0,T]; H) ∩ L2(0,T ; V ).

Theorem 3.2.13. Suppose that α ≥ 0, z ∈ L4loc([0,∞);L4(S2) ∩ H), v0 ∈ H and f ∈ V ′. Then
there exists P-a.s. a unique solution u ∈ D([0,∞); H) ∩ L2loc([0,∞); V ) of equation (3.61). In
particular, if

∞∑
l=1

|σl|βλβ/2
l < ∞ ,

then z ∈ L4loc([0,∞);L4(S2) ∩ H).

Analogously to Theorem 3.2.12, the (càdlàg in time) solution to the SNSE depends continuously
on initial data, noise and forcing terms.
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Theorem 3.2.14. Assume that,
u0
n → u in H

and for some T > 0,
zn → z in L4([0,T];L4(S2) ∩ H) fn → f in L2(0,T ; V ′). (3.81)

Let us denote by u(t, z)u0 the solution of (3.75) and by u(t, zn)u0n the solution of (3.75) with
z, f , u0 being replaced by zn, fn, u0n. Then

u(·, zn)u0
n → u(·, z)u0 in D([0,T]; H) ∩ L2(0,T ; V ).

In particular, u(T, zn)u0n → u(T, zn)u0 in H.

Moreover, the weak solution is found to be strong indeed.

Theorem 3.2.15. Assume that α ≥ 0, z ∈ L4loc([0,∞);L4(S2) ∩ H), f ∈ H and v0 ∈ H. Then,
there exists unique solution of (3.76) in the space C(0,T ; H) ∩ L2(0,T ; V ) which belongs to
C(h,T ; V ) ∩ L2loc(h,T ; D(A)) for all h > 0 and T > 0. Moreover, if v0 ∈ V , then v ∈ C(0,T ; V ) ∩
L2loc(0,T ; D(A)) for all T > 0. In particular, v(T, zn)u0n → v(T, zn)u0 in H. Moreover, if

∞∑
l=1

|σl|βλβ/2
l < ∞ ,

then z ∈ L4loc([0,∞);L4(S2) ∩ H).

Theorem 3.2.16. Assume that α ≥ 0, z ∈ L4loc([0,∞);L4(S2)∩H), f ∈ H and v0 ∈ H. Then, there
exists P-a.s. unique solution of (3.61) in the space D(0,T ; H) ∩ L2(0,T ; V ). which belongs to
D(ε,T ; V ) ∩ L2loc(ε,T ; D(A)) for all ε > 0. and T > 0. Moreover, if v0 ∈ V , then u ∈ D(0,T ; V ) ∩
L2loc(0,T ; D(A)) for all T > 0, ω ∈ Ω. Moreover, if

∞∑
l=1

|σl|βλβ/2
l < ∞ ,

then z ∈ L4loc([0,∞);L4(S2) ∩ H).

Theorem 3.2.17. Assume additionally, that there exists m > 1 such that σl = 0 for all l ≥ m.
Then the solution u to (3.61) admits at least one invariant measure.
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3.3 Weak solutions
In standard PDE theory, it is often convenient to recast the original problem in an appropriate
‘weak form’, and then to seek for a solution of the transformed equation, that is, the so-called
‘weak solution’. Roughly speaking, the weak formulation allows one to exploit techniques that
are not available in its classical form, and lead to a weak solution. Ideally, once the existence
of a weak solution is found, then it would be possible to show that the weak solution is indeed
smooth and hence becomes a classical solution. For our 2D stochastic Navier-Stokes equation,
we are able to prove the existence of weak solutions for all positive times as well as their
smoothness (or in other words, the so-called ‘strong solution’.) .

3.3.1 Motivation
Let us write (3.75) in a slightly different way as⎧⎨

⎩
∂tv(t) + (νA + C)v(t) = f − B(v(t) + zα(t)) + αzα(t),
v(0) = v0

Let F = −B(z) + αz + f and rearrange, one gets⎧⎨
⎩
∂tv(t) + νAv(t) = −Cv(t) − B(v) − B(v, z) − B(z, v) + F ,
v(0) = v0

(3.82)

Multiply (3.82) with v , then using
(Av, v) = |∇v|2 = |v|V , (Cv, v) = 0,B(z, v, v) = 0,

one gets
1
2∂t|v|2 + ν|Dv|2 = −B(v, z, v) + ⟨F (t), v⟩, v(0) = v0.

Now we know,
B(z) ∈ V ′, |z|V ′ ≤ C|z|4,

so z is in V ′ and so F ∈ V ′. So
⟨F (t), v⟩ = 1

ν |F (t)|2V ′ + ν
4 |Dv|2, (3.83)

|b(v, v, z)| = ν
4 |v(t)|2V + C

ν3 |v|2|z|2V , (3.84)
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1
2∂t|v|2 + ν|Dv|2 ≤ ν

4 |Dv|2 + C
ν |v|2|Dz|2 + 1

ν |F (t)|2V ′ + ν
4 |Dv|2,

∂t|v|2 + ν|Dv|2 ≤ 2C
ν |Dz|2|v|2 + 2

ν |F (t)|2V ′. (3.85)
Then apply Gronwall lemma to

∂t|v|2 ≤ C
ν |Dz|2|v|2 + 2

ν |F (t)|2V ′.
One has

sup
t∈[0,T]

|v|2 ≤ |v(0)|2 exp
( 1

2ν
∫ T

0
|D(z(τ))|2dτ

)
+
∫ T

0
2
ν |F (t)|2V ′

(
exp

∫ T

s
1
2ν |Dz(τ)|2dτ

)
dt.

This inequality is a promising a priori estimate indicates that T = ∞. Fix T > 0, denoting

ΨT (z) = exp
( 1

2ν
∫ T

0
|D(z(τ))|2dτ

)
, CF =

∫ T

0
2
ν |F (t)|2V ′

(
exp

∫ T

s
1
2ν |Dz(τ)|2dτ

)
dt.

The above inequality becomes
sup
t∈[0,T]

|v|2 ≤ |v(0)|2ΨT (z) + CF < ∞, t ∈ [0,T], (3.86)

which implies
v ∈ L∞(0,T ; H), (3.87)

then integrate in time (3.85) from 0 to T , one gets

|v(T)|2 + ν
∫ T

0
|Dv(s)|2ds ≤ |v0|2 + 1

2ν
∫ T

0
|Dz(s)|2 (|v(0)|2ψT (z) + CF

)dt + 2
ν
∫ T

0
|F (t)|2dt,

(3.88)
which implies

v ∈ L2(0,T ; H). (3.89)
Therefore,

v ∈ L∞(0,T ; H) ∩ L2(0,T ; V ). (3.90)
Indeed, this essentially yields the definition of weak solution. Furthermore, since v solves
(3.75), v ∈ L2(0,T ; V ) and A : V 12 V ′ is a bounded linear operator, Av ∈ L2(0,T ; V ′). Since z ∈
L4loc([0,∞);L4(S2) ∩ H) which can be continuously embedded into H−1 since H1 is continuously
embedded into L4. It then follows that all terms −B(z) + αz + f ∈ L2(0,T ; V ′), B(v), B(v, z),
B(z, v) belongs to L2(0,T ; V ′). Hence ∂tv ∈ L2(0,T ; V ′). Thus, it follows from a classical fact
∂t|u(t)|2 = 2⟨∂tu(t), u(t)⟩ (see Lion and Magenes p.238 1.2 [72]) that v ∈ C([0,T]; H).
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3.3.2 Existence of Weak solutions via Galerkin approximation
Our aim in this subsection is to prove the existence part of Theorem 3.2.11. First, we con-
struct approximate solutions and deduce local existence and uniqueness of the solutions of
the Galerkin equations of SNSE. (For a comprehensive overview of Galerkin methods on
spheres, we refer readers to [69].) Next, we obtain uniform a prior estimates on the solutions
vL and hence show that they exist globally in time. Last but not least, we extract a convergent
subsequence and pass to the limit in the equation.

Definition 3.3.1. The L-order Galerkin equations for the SNSE (3.82) is given by⎧⎨
⎩
∂tvL(t) = PL[−νAvL − B(v) − B(v, z) − B(z, v) − Cv(t) + F ],
v(0) = PLv0,

(3.91)

where F = −B(z) + αz + f and operators A, B and C are defined respectively in (3.34), (3.58)
and (3.38). We call vL the Galerkin approximations.

3.3.2.1 Local existence and uniquness of vL

For any L ∈ N denote
HL = linspan{Zl,m : l = 1, · · · ,L; |m| ≤ l},

as the linear space spanned by the first L eigenfunctions in an orthonormal basis {Zl,m : l =
1, · · · ,L; |m| ≤ l} of H , which may be assumed to be the orthogonal in V . In other words,
HL is the L-dimensional subspace of V and PL is the orthogonal projection from H onto HL
defined as

PLv =
L∑
l=1

l∑
m=−l

(v,Zl,m)Zl,m.

We replace (3.82) by the Galerkin approximations (3.91), where F = −B(z) + αz + f . In view
of (3.53), B(z) belongs to the dual space V ′ and so F ∈ L2(0,T ; V ′).
We notice that (3.91) is an Ordinary Differential Equations (ODE) in HL , hence the existence
and uniqueness of solution vL of (3.91) defined on [0,TL) follows from standard theory of ODE.
Since the right-hand side has a bilinear form, it is not clear if vL can be defined globally or it
could blow up at some time TL < ∞. We will show in the next subsubection that the H norm
of the solution stay finite as t → TL, which implies the solution indeed exists globally in time.
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3.3.2.2 Uniform a-priori estimates on the solutions vL

From the last subsubsection we already know that vL exists on some time interval [0,TL). Now
we want to send L to infinity and to show a subsequence of the solution vL of the approximate
problem converges to a weak solution to (3.82). For this, we need some uniform estimates.
Take the inner product of (3.91) in H with vL(t) we obtain
(∂tvL(t), vL(t)) = −ν(PLAvL, vL) − (PLB(vL), vL) − (PLB(vL, z), vL) − (PLB(z, vL), vL) − (PLCvL, vL) + ⟨F , vL⟩.
We notice that

(∂tvL(t), vL(t)) = 1
2
d+

dt |vL(t)|2,
−ν(PLAvL, vL) = −ν(AvL, vL) = −ν|vL|2V ,

and by (3.48),
(PLB(vL), vL) = (B(vL), vL) = b(vL, vL, vL) = 0, (PLB(z, vL), vL) = b(z, vL, vL) = 0,

and by (3.38),
(PLCvL, vL) = (CvL, vL) = 0.

Therefore, for any t > 0 we have
1
2
d+

dt |vL(t)|2 = −ν|vL(t)|2V − b(vL(t), vL(t), vL(t)) + ⟨F (t), vL(t)⟩ t ∈ [0,TL).
Using (3.48) and (3.56) and the Young inequality (ab ≤ ap

p + bq
q with p = 4, q = 4/3), we have

|b(vL, vL, z)| ≤ C|vL|L4(S2)|vL|V |z|L4(S2)

≤ C|vL|1/2|vL|3/2
V |z|L2(S2)

≤ C|vL|1/2|vL|3/2
V |z|V

≤ C
ν3 |vL|2|z|4V + ν

4 |vL|2V .
We also have

⟨F (t), vL⟩ ≤ |F (t)|V ′|vL|V ≤ 1
ν |F (t)|2V ′ + ν

4 |vL|2V .
Hence we obtain

∂t|vL(t)|2 + ν|vL|2V ≤ C
ν3 |vL|2|z|4V + 2

ν |F (t)|2V ′ , t ∈ [0,TL). (3.92)
Invoking Gronwall Lemma (see appendix), one has

|vL(t)|2 ≤ |v(0)|2 exp
(C
ν3

∫ t

0
|z(τ)|4Vdτ

)
+
∫ t

0
2
ν |F (s)|2V ′ exp

(C
ν3

∫ t

s
|z(τ)|4Vdτ

)
ds, t ∈ [0,TL).

It follows that vL does not blow up in finite time and so TL = ∞.
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Let us fix T > 0. Denoting

ψT (z) = exp
(C
ν3

∫ T

0
|z(τ)|4Vdτ

)
< ∞, CF =

∫ T

0
2
ν |F (t)|2V ′ exp

(C
ν3

∫ T

s
1
2ν |z(τ)|2dτ

)
dt

We find that
sup
t∈[0,T)

|vL(t)|2 ≤ |vL(0)|2ψT (z) + CF ≤ |v(0)|2ψT (z) + CF < ∞ t ∈ [0,T) (3.93)

which implies that {vL : L ∈ N} is bounded uniformly (in L) in the norm of L∞(0,T ; H).
Next we integrate in time (3.92) from 0 to T and then using (3.93) to obtain

|vL(T)|2 + ν
∫ T

0
|vL(t)|2Vdt + C

ν3

∫ T

0
|z(t)|2V |vL(t)|2dt + 2

ν
∫ T

0
|F (t)|2V ′dt.

We will now pass to the limits by sending L to infinity, to build a weak solution of our original
problem (3.82). For this we need some convergence results. Notice that the above inequality
implies that

the sequence {vL : L ∈ N} is bounded uniformly in L2(0,T ; V ) (3.94)
Therefore we have shown that vL is uniformly bounded in L in the norm of L∞(0,T ; H) ∩
L2(0,T ; V ). These uniform bounds imply that {vL} has a subsequence that converges weakly
in L2(0,T ; V ) and weakly* in L∞(0,T ; H). Then by the Banach-Alaogu theorem (see Appendix),
one can extract a subsequence {vLk ⊂ vL} and some limit function v ∈ L2(0,T ; V ) such that⎧⎨

⎩
vL ⇀ v, weakly in L2(0,T ; V ),
vL ⇀ v, weakly* in L∞(0,T ; H). (3.95)

Now we need to show
vL → v strongly in L2(0,T ; H), (3.96)

and this strong convergence result allows us to choose vL such that vL → v in L2(S2) for all
t ≥ 0 The crux to prove (3.96) is a compactness theorem which involves fractional derivatives.
Now, Let us assume that X0 ⊂ X ⊂ X1 are Hilbert spaces with the injection being continuous
and the injection of X0 into X is compact. If v is a function from R to X1, let us denote v̂ the
Fourier Transform as

v̂(τ) =
∫
R
e−2πitτv(t)dt, τ ∈ R. (3.97)

The fractional derivative in t of order γ of v is the Fourier transform of the X1-valued function
{R ∋ τ 12 (2iπτ)γv̂(τ)}:

D̂γ
t v(τ) = (2iπτ)γv̂(τ), τ ∈ R.
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The definition makes sense, observe that the first derivative of (3.97) via integration by part is
obtained as,

D̂tv(τ) =
∫
R
e−2iπτtv ′(t)dt

= e−2πiτtv(t)|∞−∞ −
(

−2πiτ
∫
R
v(t)e−2πiτtdt

)

Since |v(t)| → 0 as |t| → ∞, the first term vanishes, and so
D̂tv(τ) = 2πiτv̂L(t).

For a given γ > 0, we define the space
Hγ(R; X0,X1) = {v ∈ L2(R; X0) : Dγ

t v ∈ L2(R; X1)}, (3.98)
as a Hilbert space equipped with the norm

∥v∥Hγ (R; X0,X1) = (∥v∥2
L2(R;X0) + ∥|τ|γv̂∥L2(R;X1))1/2.

For a given set K ⊂ R, the subspace Hγ,2
K of Hγ = Hγ,2(R; X0,X1) is defined by

Hγ
K(R; X0,X1) = {u ∈ Hγ(R; X0,X1), spt u ⊂ K}. (3.99)

Theorem 3.3.2 (Chapter III, Theorem 2.2 [105]). Suppose that X0 ⊂ X ⊂ X1 is a Gelfand triple
of Hilbert spaces and the injection of X0 into X is compact. Then for any bounded set K ⊂ R
and γ > 0, the injection of Hγ

K(R; X0,X1) into L2(R; X) is compact.

To apply this compactness theorem, one first need to identity bounded set. For this let
ṽL = 1(0,T)vL,

and Let Fourier Transform in the time variable of ṽL denotes by v̂L. We would like to show
that ∫

R
|τ|2γ|v̂L(τ)|2dt < ∞. (3.100)

Observe that (3.91) can be written as
d+

dt ṽL = f̃L + vL(0)δ0 − vL(T)δT , (3.101)
where δ0 and δT are respectively the Dirac distributions at 0 and T and

fL = F − νAvL − BvL − B(vL, z) − B(z, vL) − CvL,
f̂L = 1(0,T)fL.
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Apply the Fourier Transform to (3.101) (with respect to the time variable t) we obtain
D̂tv(τ) = (2iπτ)v̂(τ) = f̂L(τ) + vL(0) − vL(T) exp(−2iπTτ), τ ∈ R, (3.102)

where v̂L and f̂L are the Fourier Transform of ṽL and f̃L respectively. Multiply this equation
with the Fourier Transform of vL one obtain for each τ ∈ R that

2iπτ|v̂L(τ)|2 = (f̂L(τ), v̂L(τ)) + (vL(0), v̂L(τ)) − (vL(T), v̂L(τ)) exp(−2iπTτ). (3.103)
From the Parseval equality, (3.38) and (3.48), one has

(f̂L, v̂L) = (fL, vL) = ⟨F , vL⟩ − ν(AvL, vL) − b(vL, z, vL). (3.104)
Therefore, via Cauchy Schwartz and (3.84), we have

|(fL, vL)| ≤ |F |V ′|vL|V + ν|vL|2V + C
ν3 |vL|2|z|4L4(S2) + C

ν3 |vL|2|z|44 + ν
4 |v|2V , (3.105)

sup
v∈V ,|v|V ̸=0

|(f , v)|
|v|V = |fL|V ′ ≤ |F |V ′ + ν|v|V + C

ν3 |vL||z|4L4(S2) + ν
4 |vL|2V .

Now due to (3.94), |vL| ≤ C1, then integrate over time we conclude
∫ T

0
|fL|V ′dt ≤

∫ T

0

(
|F |V ′ + 5ν

4 |v|V + C1
ν3 |z|4L4(S2)

)
dt (3.106)

and this stays bounded (w.r.t. L) as F ∈ L2(0,T ; V ′), z ∈ L4loc([0,∞);L4(S2)) remains in a bounded
set of L2(0,T ; V ). Hence, there exists a C > 0 such that

sup
L∈N

sup
τ∈R

|f̂L(τ)|V ′ ≤ C. (3.107)
Now observe from (3.103) that

2iπτ|v̂L(τ)|2 = (f̂L(τ), v̂L(τ)) + (vL(0), v̂L(τ)) − (vL(T), v̂L(τ)) exp(−2iπTτ)
≤ |(f̂L(τ), v̂L(τ))| + vL(0)|v̂L(τ)| + vL(T)|v̂L(τ)|e−2iπTτ.

Then from (3.94), we see
|vL(0)| ≤ c1, |vL(T)| ≤ c1. (3.108)

Combined with (3.107), one deduces that
|τ||v̂L|2 ≤ c2|v̂L|V + c3|v̂L| ≤ c4|v̂L|V . (3.109)

Let us fix γ ∈ (0, 1/4). Observe that
|τ|2γ ≤ C(γ)(1 + |γ|)/(1 + |τ|1−2γ) ∀ τ ∈ R, (3.110)
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we infer that ∫
R

|τ|2γ ≤ C(γ)
∫
R

1 + |τ|
1 + |τ|1−2γ |v̂L(τ)|2Vdτ

≤ c5
∫
R

|τ||v̂L(τ)|2Vdτ
1 + |τ|1−2γ + c6

∫
R

|v̂L(τ)|2Vdτ.

In the last step, the first integral is finite since γ < 1/4.3 Then base on Parseval inequality, one
has |v̂L| = |vL| and |v̂L|V = |vL|V which is bounded according to (3.95). Hence we have shown

{ṽL} is bounded in Hγ(R; V ,H). (3.111)
This allows us to apply the compactness theorem involves fractional derivatives.
Since the sphere S2 is bounded, the embedding H1(S2) ↪2 L2(S2) is compact and by (3.111), the
sequence {ṽL : L ∈ N} is bounded in Hγ(0,T ;H1(S2),L2(S2)). Due to (3.111) and Theorem 3.3.2,
we deduce that there exists a subsequence {vLk} such that {vLk} → v strongly in L2(0,T ;L2(S2))

vL → v strongly L2(0,T ; H). (3.112)
The convergence result (3.95) and (3.96) enable us to pass to the limit. Now we need to show
the limit function indeed satisfies (3.75). Take a C1([0,T];R) function ψ with ψ(T) = 0. Multiply
(3.91) with ψ(T)φ where φ ∈ Hl for some l ∈ N+, then integrate by parts, one gets

−
∫ T

0
(vL(t), ψ′(t)φ)dt = −ν

∫ T

0
(PLAvL(t), ψ(t)φ)dt

−
∫ T

0
(PLB(vL(t)), ψ(t)φ)dt −

∫ T

0
PLB(vL(t), z, ψ(t)φ)dt

−
∫ T

0
PLB(z, vL(t), ψ(t)φ)dt −

∫ T

0
⟨PLF (t), ψ(t)φ⟩dt + (vL(0), ψ(0)φ). (3.113)

Now we aim to pass to the limit of (3.113) when L → ∞. Since ψ(·)φ ∈ L2(0,T ; H), ψ ∈ C1(0,T ;R),
then ψ(·)φ ∈ L2(0,T ; V ), combine with the first part of (3.95), we have

∫ T

0
⟨vL(t), ψ′(t)⟩dt →

∫ T

0
⟨v(t), ψ′(t)⟩dt as L → ∞. (3.114)

Hence the left hand side of (3.113) converges to − ∫ T
0 (v(t), ψ′(t)φ)dt.

3This integral converges iff. ∫∞
1 x2(2γ−1)dx < ∞. This holds iff. 2(2γ − 1) < −1.
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Next, for the linear term, let us take take l ∈ L so that Hl ⊂ HL and PLφ = φ. For the first
term on the right hand side of (3.95), observe that

∫ T

0
(PLAvL(t), ψ(t)φ)dt =

∫ T

0
(AvL(t), ψ(t)PLφ)dt

=
∫ T

0
(AvL(t), ψ(t)φ)dt

=
∫ T

0
(vL(t), ψ(t)φ)Vdt.

Again, since ψ(·)φ ∈ L2(0,T ; V ), it follows from (3.95) that, as L → ∞,
∫ T

0
(PLvL(t), ψ(t)φ)dt →

∫ T

0
(v(t), ψ(t)φ)Vdt, (3.115)

or ∫ T

0
(vL(t) − v(t), ψ(t)φ)Vdt → 0. (3.116)

Lemma 3.3.3. If vm ⇀ v in L2(0,T ; V ) and strongly in L2(0,T ; H), then for any vector function
u : [0,T] × S2 → R2 with components in C1(S2 × [0,T]),

∫ T

0
b(vm(t), vm(t), u(t))dt →

∫ T

0
b(v(t), v(t), u(t))dt. (3.117)

Proof. ∫ T

0
b(vm, vm, u)dt = −

∫ T

0
b(vm, u, vm)dt

= −
3∑

i,j=1

∫ T

0

∫
S2

(vm)i(Diuj)(vm)jdxdt.

Now our two assumptions on vm imply that
vm → v in H, (3.118)

Dvm ⇀ Dv weakly in H. (3.119)
and which further implies that

|vm(t)|2 + sup
0≤t≤T

∫ T

0
|vm(t)|2Vdt ≤ C.
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Hence, there exists a function g(t) for which the term Fm = (vm)i(Diuj)(vm)j is dominated for
all t ∈ [0,T]. Now by (3.118),

|vm| ≤ c1, uniformly in m,
|Du| ≤ c2.

Hence Fm(t) ≤ g(t) = c21c2. Then by usual continuity argument one has

limm→∞

∫ T

0

3∑
i,j=1

∫
S2

(vm)i(Diuj)(vm)jdxdt =
∫ T

0
limm→∞

3∑
i,j=1

∫
S2

(vm)i(Diuj)(vm)jdxdt

=
∫ T

0

3∑
i,j=1

∫
S2
vi(Diuj)vjdxdt,

∫ T

0
b(vm, vm, u)dt = −

∫ T

0
b(vm, u, vm)dt

= −
3∑

i,j=1

∫ T

0

∫
S2

(vm)i(Diuj)(vm)jdxdt

= −∑
∫ T

0

∫
S2
vi(Diuj)vjdxdt

= −
∫ T

0
b(v, u, v)dt

=
∫ T

0
b(v, v, u)dt.

!

An alternative proof is the following [14].
Proof. In view of (3.48), one has b(vm, vm, u) = −b(vm, u, vm). We also have

b(vm, u, vm) = −b(vm, u, vm).
One also have

b(vm, u, vm) − b(v, u, v) = b(vm, u, vm − v) + b(vm − v, u, v).
Using (3.49), combine with the assumption vm → v strongly in L2(0,T ; H)., one also has

|b(vm, u, vm − v)| = |b(vm, vm − v, u)| ≤ C|vm|V |vm − v|V (|curlu|L∞(S2) + |u|L∞(S2)). (3.120)
Moreover, invoke the assumption vm → v strongly in L2(0,T ; H). again, we conclude that

∫ T

0
b(vm, u, vm − v)dt → 0. (3.121)
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Similarly,
∫ T

0
b(vm(t) − v(t), u(t), v(t))dt → 0 (3.122)

!

Lemma 3.3.4. Suppose {vm} is bounded in L∞(0,T ; H), v ∈ L∞(0,T ; H), vm ⇀ v in L2(0,T ; V )
and strongly in L2(0,T ;L2loc(S2)). Then for any w ∈ L4(0,T ; L4(S2)),

∫ T

0
b(vm(t), w(t), vm(t) − v(t))dt → 0.

Proof. In view of (3.48), one has b(vm, vm,w) = −b(vm,w, vm). One also has
b(vm,w, vm) − b(v,w, v) = b(vm,w, vm − v) + b(vm − v,w, v).

Using (3.52), combine with the assumption vm → v strongly in L2(0,T ; H)., one also has
|b(vm,w, vm − v)| = |b(vm, vm − v,w)| ≤ C|vm|L4(0,T ;L4(S2))|vm − v|V |w|L4(0,T ;L4(S2)). (3.123)

Moreover, invoke the assumption vm → v strongly in L2(0,T ;L2loc(S2)) once again, we conclude
that ∫ T

0
b(vm(t), w(t), vm(t) − v(t))dt → 0. (3.124)

Similarly,
∫ T

0
b(vm(t) − v(t), vm(t), v(t))dt → 0. (3.125)

!

Alternatively, one may prove the above Lemma following the proof as in [21]. We detail this
here for comparison.
Proof. From our assumptions, there exists a constant C > 0, such that

sup
0≤t≤T

|vm(t)| + sup
0≤t≤T

|v(t)| 1
2 (
∫ T

0
|v(t)| 1

2 )
(∫ T

0
|vm(t)|2Vdt

) 3
4

+
(∫ T

0
|vm(t)|2dt

) 3
4

≤ C.

Take ε > 0. Since w ∈ L4(0,T ;L4(S2)) Hence, via the usual mollification argument, one
can find a function u which satisfying the assumptions of previous lemma and such that
(∫ T

0 |w(s) − u(s)|4L4(S2))ds)1/4 < ε
3C2 . Hence, by this lemma, we can find Mε ∈ N such that for for

any m ≥ Mε , one has
∣∣∣∣
∫ T

0
b(vm(t), vm(t), u(t)) −

∫ T

0
b(v(t), v(t), u(t))

∣∣∣∣ < ε
3 .
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Hence, for any m > Mε ,∣∣∣∣
∫ T

0
b(vm(t), vm(t), w(t))dt −

∫ T

0
b(v(t), v(t), w(t))dt

∣∣∣∣

=
∣∣∣∣
∫ T

0
b(vm(t), vm(t), w(t)−u(t))dt+

∫ T

0
b(vm(t), vm(t), u(t))dt−

∫ T

0
b(v(t), v(t), w(t) −u(t))dt−

∫ T

0
b(v(t), v(t), u(t))dt

∣∣∣∣

≤
∣∣∣∣
∫ T

0
b(vm(t), vm(t), w(t) − u(t))dt

∣∣∣∣+
∣∣∣∣
∫ T

0
b(v(t), v(t), w(t) − u(t))dt

∣∣∣∣

+
∣∣∣∣
∫ T

0
b(vm(t), vm(t), u(t))dt −

∫ T

0
b(v(t), v(t), u(t))dt

∣∣∣∣
Now, by (3.52) and (3.56),

≤ ε
3 +

∫ T

0
|vm(t)| 1

2 |vm(t)| 3
2V |w(t) − u(t)|4L4dt +

∫ T

0
|v(t)| 1

2 |v(t)| 3
2V |w(t) − u(t)|4L4dt < ε.

!

For the second term of the right hand side of (3.113), that is,
∫ T

0
(PLB(vL(t)), ψ(t)φ)dt.

We apply Lemma 3.3.4 with w(t, x̂) = ψ(t)φ(x̂) for t ∈ [0,T], x̂ ∈ S2. Since PL is self-adjoint
in H and (PLB(vL), ψ(t)φ) = (B(vL),PLψ(t)φ) = (B(vL), ψ(t)φ) = b(vL, vL, ψ(t)φ), one obtains the
following convergence:

∫ T

0
(PLB(vL(t)), ψ(t)φ)dt =

∫ T

0
b(vL, vL, ψ(t)φ)dt →

∫ T

0
b(v(t), v(t), ψ(t)φ)dt.

Consider the third term on the the right hand side of (3.113),since
∫ T

0
PLB(vL(t), z, φ(t)φ)dt =

∫ T

0
(B(vL, z), ψ(t)PLφ)dt

=
∫ T

0
(B(vL, z), ψ(t)φ)dt =

∫ T

0
b(vL, z, ψ(t)φ)dt.

Using (3.48) and (3.49) we obtain,
∣∣∣∣
∫ T

0
(PLB(vL, z), ψ(t)φ)dt −

∫ T

0
b(v, z, ψ(t)φ)dt

∣∣∣∣

=
∣∣∣∣
∫ T

0
b(vL(t) − v(t), z(t), ψ(t)φ)dt

∣∣∣∣ =
∣∣∣∣
∫ T

0
b(vL(t) − v(t), ψ(t)φ, z)dt

∣∣∣∣

≤
∫ T

0
|b(vL(t) − v(t), ψ(t)φ, z)|dt

≤ C
∫ T

0
|vL(t) − v(t)||z|(|ψ(t)curlφ|L∞(S2) + |ψ(t)φ|L∞(S2)).
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Since vL → v strongly in L2(0,T ; H) and z ∈ L4([0,T];L4(S2) ∩ H) we infer that the last integral
converges to 0 as L → ∞. Hence,

∫ T

0
(PLB(vL, z), ψ(t)φ)dt −

∫ T

0
b(v, z, ψ(t)φ)dt → 0.

Similarly,
∫ T

0
(PLB(z, vL), ψ(t)φ)dt −

∫ T

0
b(z, v(t), ψ(t)φ)dt → 0.

For the fifth term on the rhs of (3.113), we have
∫ T

0
⟨PLF , ψ(t)φ⟩dt =

∫ T

0
⟨F , ψ(t)PLφ⟩dt =

∫ T

0
⟨F , ψ(t)φ⟩dt.

Now we recall (3.95) to find upon passing to the weak limit of (3.113) that

−
∫ T

0
(v(t), ψ′(t)φ)dt = −ν

∫ T

0
(Av(t), ψ(t)φ)dt −

∫ T

0
(B(v(t)), ψ(t)φ)dt −

∫ T

0
(B(v(t), z, ψ(t)φ)

−
∫ T

0
(B(z, v(t)), ψ(t)φ)dt −

∫ T

0
⟨F (t), ψ(t)φ⟩dt + (v0, ψ(0)φ). (3.126)

This equality holds for any φ ∈ V and any ψ ∈ C10([0,T). Hence, v solves problem (3.77) and
so it satisfies (3.75).
To infer v indeed satisfies (3.75) one also need to show v(0) = v0. For this, let us take an
arbitrary function φ ∈ V and ψ ∈ C10([0,T)). Multiply (3.75) by ψ(t)φ then integrate by parts,
one gets

−
∫ T

0
(v(t), ψ′(t)φ)dt = −ν

∫ T

0
(Av(t), ψ(t)φ)dt −

∫ T

0
(B(v(t)), ψ(t)φ)dt −

∫ T

0
(B(v(t), z, ψ(t)φ)

−
∫ T

0
(B(z, v(t)), ψ(t)φ)dt −

∫ T

0
⟨F (t), ψ(t)φ⟩dt + (v(0), ψ(0)φ), (3.127)

by comparing with (3.126), one infers that
(v(0) − v0, φ)ψ(0) = 0.

If we choose ψ with ψ(0) = 1, then necessarily,
(v(0) − v0, φ) = 0, ∀ φ ∈ V .

Then since V is dense in H , the above holds for any φ ∈ H . Since v(0) − v0 ∈ H , one has
(v(0) − v0, v(0) − v0) and so v(0) = v0.
The final step is to show v ∈ C([0,T]; H). Let us first recall the following weak continuity result
from Temam [105].
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Observe from the ODE
d+

dt v(t) + (νA + C)v(t) = f̂ − B(v(t) + zα(t)) + αzα(t) (3.128)
and lemma 3.1.7, since each term of the right hand side belongs to L2(0,T ; V ′) and so d+

dt v(t) also
belongs to L2(0,T ; V ′), hence it follows from Lemma 3.1.5 that u is a.e. a function continuous
from [0,T] into H . Thus

v ∈ C([0,T]; H). (3.129)
Combine with the earlier result (3.112) we conclude that v ∈ L2(0,T ; V ) ∩ C([0,T]; H). Note, the
solution is in L4(0,T ;L4(S2)) as well. To see this,

∫ T

0
|v(t)|4L4(S2)

≤ C
∫ T

0
|v|2L2(S2)|v|2V < ∞,

due to the interpolation inequality in p.12 [66].
So, the proof of existence of global weak solutions is completed. To complete the proof of
Theorem 3.2.11 we now prove uniqueness using the classical argument of Lion and Prodi [74]
.

3.3.2.3 Uniqueness of solutions

Suppose v1, v2 are two solutions of (3.75) with the same initial condition. Let w = v1 − v2, then
w satisfies ⎧⎨

⎩
∂tw + νAw = −B(w, z) − B(z,w) − B(w, v1) − B(v2, z) − Cw,
w(0) = 0. (3.130)

Multiply (3.130) both sides with w and integrate against w , using Lemma 3.1.5, equations (3.48)
and (3.38), we get

∂t|w|2 + 2ν|w|2V = −2b(w, z,w) − 2b(w, vn,w),
Since |b(w,w, z)| ≤ C|w||w|V |z|V and |b(w,w, v)| ≤ C|w||w|V |v|V , the right hand side

≤ C|w||w|V (|z|V + |v1|V ).
Then via usual Young inequality with a = √ν|w|V and b = C√ν |w|(|z|V + |vn|V ), one has

|b(w,w, v)| ≤ ν|w|V
2 + C

2ν |w|2(|z|2V + |v1|2V ) (3.131)
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Therefore, by Gronwall lemma one obtains
∂t|w|2 ≤ C

2ν (|z|2V + |v1|2V )|w|2,
and combine with w0 = v1,0 − v2,0 = 0, it is easy to show

|w(t)|2 ≤ |w(0)|2 exp
( C

2ν (
∫ T

0
|z(t)|2V + |v1(t)|2V )|w(t)|2dt

)
< ∞,

as ∫ T
0 |z(t)|2V + |v1(t)|2dt < ∞. Now, since w(0) = 0, necessarily w(t) must be 0.

Therefore Theorem 3.2.11 is proved.

3.3.2.4 Continuous dependence on initial data, noise and force
This subsubsection is devoted to the proof of Theorem 3.2.12. Namely,

Theorem 4.2.12. Assume that,
u0
n → u0 in H,

and for some T > 0,
zn → z in L4([0,T];L4(S2) ∩ H), fn → f in L2(0,T ; V ′). (3.132)

Suppose v(t, z)u0 and v(t, zn)u0n be two solutions of (3.75). Then,
v(·, zn)u0

n → v(·, z)u0 in C([0,T]; H) ∩ L2(0,T ; V ).
In particular, v(T, zn)u0n → v(T, zn)u0 in H.

Proof. Write
vn(t) = v(t, zn), v(t) = v(t, z), yn(t) = v(t, zn) − v(t, z), t ∈ [0,T],

ẑn = zn − z, f̂n = fn − z.
Then it is clear that yn solves⎧⎨

⎩
∂tyn(t) = −νAyn(t) − B(vn(t) + zn(t)) + B(v(t) + z(t)) − Cyn + αẑn + f̂n,
yn(0) = u0n − u0.

(3.133)

Since yn ∈ L2(0,T ; V ) and ∂tyn ∈ L2(0,T ; V ′), it follows from lemma 3.1.5 that the function
|yn|2 is absolutely continuous on (0,T) and 1

2∂t|yn(t)|2 = ⟨∂tyn(t), yn(t)⟩ holds in the weak sense.
Moreover, by equation (3.31) we have ⟨Ayn(t), yn(t)⟩ = |∇yn(t)|2 a.e. on (0,T) and (Cyn, yn) = 0
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and so we arrive with,
1
2∂t|yn(t)|2 + ν|∇yn(t)|2 = −b(yn, vn, yn) − b(v, yn, yn) − b(ẑn, vn, yn) − b(z, yn, yn) − b(vn, ẑn, yn)

− b(yn, z, yn) − b(zn, ẑn, yn) − b(ẑn, z, yn) + α(ẑn, yn) + (f̂n, yn), t ≥ 0.
Using the Young inequality, we have

b(yn, vn, yn) ≤ |yn|2L4(S2)|vn|V via inequality (3.52)
≤ |yn||yn|V |vn|V via 3.56

With ab = √ ν
10 |yn|V

√
10
ν |vn|V |yn|, p = 2

≤ ν
20 |yn|2V + 5

ν |vn|2V |yn|2.
Similarly,

b(v, yn, yn) ≤ |v|L4(S2)|yn|V |yn|L4(S2)

≤ |v|L4(S2)|yn|3/2
V |yn|1/2

Now using Young inequality with p = 4/3 and a = (15
ν )−3/4|yn|3/2

V and b = (15
ν )3/4|yn|1/2|v|L4(S2),

≤ ν
20 |yn|2V + 153

4ν3 |yn|2|v|4L4(S2),

b(ẑn, vn, yn) ≤ |ẑn|L4(S2)|yn|V |vn|L4(S2)

≤ ν
20 |yn|2V + 5

ν |ẑn|L4(S2)|vn||vn|2V ,

b(z, yn, yn) ≤ |z|L4(S2)|yn|V |yn|L4(S2)

≤ |z|L4(S2)|yn|3/2
V |yn|1/2

Now using Young inequality with p = 4/3 and a = (15
ν )−3/4|yn|3/2

V and b = (15
ν )3/4|yn|1/2|z|L4(S2),

≤ ν
20 |yn|2V + 153

4ν3 |yn|2|z|4L4(S2),

b(vn, ẑn, yn) ≤ |v̂n|L4(S2)|yn|V |ẑn|L4(S2)

≤ ν
20 |yn|2V + 5

ν |vn||vn|2V |ẑn|L4(S2),
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b(yn, z, yn) ≤ |yn|2L4(S2)|z|V ≤ |yn||yn|V |ẑn|2L4(S2)

≤ ν
20 |yn|2V + 5

ν |z|2V |yn|2,

b(zn, ẑn, yn) ≤ |zn|L4(S2)|yn|V |ẑn|L4(S2)

≤ ν
20 |yn|2V + 5

ν |zn|2L4(S2)|ẑn|2L4(S2),

α(ẑn, yn) ≤ α|yn|V |ẑn|V ′

≤ ν
20 |yn|2V + 5α2

ν |ẑn|2V ′,

(f̂ , yn) ≤ |yn|V |fn|V ′

≤ ν
20 |yn|2V + 5

ν |f̂n|2V ′.
Hence we have,

∂t |yn|2 + ν|yn|2V ≤ 10
ν |vn|2V |yn|2 + 153

2ν3 |yn|2|v|4L4(S2)

+ 10
ν |ẑn|4L4(S2)|vn||vn|V + 153

2ν3 |yn|2|z|4L4(S2)

+ 10
ν |vn|V |vn|2|ẑn|4L4(S2) + 10

ν |z|2V |yn|2
10
ν |ẑn|4L4(S2)|ẑn|4L4(S2) + 10

ν |z|4L4(S2)|ẑn|4L4(S2)

10α2

ν |ẑn|2V ′ + 10
ν |f̂n|2V ′.

Integrate over 0 to t , one gets

|yn(t)|2 + ν
∫ t

0
|yn(s)|2Vds ≤ |yn(0)|2 + 10

ν
∫ t

0
βn(s)ds +

∫ t

0
γn(s)|yn(s)|2ds, t ∈ [0,T], (3.134)

where
βn = |ẑn|2L4(S2)|vn||vn|V + |vn||vn|V |ẑn|2L4(S2) + |zn|2L4(S2)|ẑn|2L4(S2)

+ |zn|2L4(S2)|ẑn|2L4(S2) + α2|ẑn|2V ′ + |f̂n|2V ′,
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γn = 10
ν |vn|2V + 153

2ν3 |v|4L4(S2) + 153

2ν3 |z|4L4(S2) + 10
ν |z|2V .

Then Gronwall yields

|yn(t)|2 ≤
(

|y(0)|2 + 10
ν
∫ t

0
βn(s)ds

)
exp

(∫ t

0
γn(s)ds

)
.

Note that∫ T

0
βn(s)ds =

∫ T

0
[|ẑn(s)|2L4(S2)|vn(s)||vn(s)|V + |vn(s)||vn(s)|V ]ẑn(s)|2L4(S2)

+ |zn(s)|2L4(S2)|ẑn(s)|2L4(S2) + |zn(s)|2L4(S2)|ẑn(s)|2L4(S2) + α2|ẑn(s)|2V ′ + |f̂n(s)|2V ′ ]ds
≤ [2|vn|L∞(0,T ;H)|vn|L2(0,T ;V ) + |zn|2L4(0,T ;L4) + |z|2L4(0,T ;L4)]|ẑn|2L4(0,T ;L4)
+ α2|ẑn|2L2(0,T ;V ′) + |f̂n|2L2(0,T ;V ′).

Hence, by usual continuity argument , pass the limit through the integral one gets
∫ T

0
βn(s)ds → 0 as n → ∞.

Moreover, since |yn(0)| → 0 as n → ∞ and for some finite constant C one has
∫ T

0
γn(s)ds =

∫ T

0

(10
ν |vn|2V + 153

2ν3 |v|4L4(S2) + 153

2ν3 |z|4L4(S2) + 10
ν |z|2V

)
ds

≤ C.
Hence yn(t) → 0 in H as n → ∞ uniformly in t ∈ [0,T]. In other words,

v(·, zn)u0
n → v(·, z)u0 in C([0,T]; H).

From inequality (3.134), we also have

ν
∫ T

0
|yn(s)|2V ≤ |yn(0)|2 + 10

ν
∫ T

0
βn(s)ds +

∫ T

0
γn(s)|yn(s)|2ds

≤ |yn(0)|2 + 10
ν
∫ T

0
βn(s)ds + sup

s∈[0,T]
|yn(s)|2

∫ T

0
γn(s)ds.

Therefore,
∫ T

0
|yn(s)|2Vds → 0 as n → ∞. (3.135)

Hence
v(·, zn)u0

n → v(·, z)u0 in L2([0,T]; V ).
and Theorem 3.2.12 is proved. !
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3.4 Proof of Theorem 3.2.15: Strong solutions
Suppose now f ∈ H , in what proceeds we will show that if u0 ∈ V then we obtain a more
regular kind of solution and deduce that if v0 ∈ H then v(t) ∈ V for every t > 0. In this
chapter, we will construct a unique global strong solution (in PDE sense).

The proof of Theorem 3.2.15 follows closely to Theorem 3.1 in [19]. However in the proof in
[19] there is no Coriolis force and additive noise whereas here there are. In particular our
constants in the proof now depend on |F (t)| and |z(t)| and |z(t)|V , but not on the Coriolis term
due to the antisymmetric condition (Cv,Av) = 0.

Remark. One can alternatively prove Theorem 3.2.15 via the usual Galerkin approximation
which we used in the proof of weak variational solution.

3.4.1 Existence and uniqueness of strong solution with v0 ∈ V
The following function spaces are introduced for convenience.

Definition 3.4.1. The spaces
XT := C(0,T ; H) ∩ L2(0,T ; V ), (3.136)

YT = C(0,T ; V ) ∩ L2(0,T ; D(A)) (3.137)
are endowed with the norm

| · |XT := | · |C(0,T ;H) + | · |L2(0,T ;V ),

| · |YT := | · |C(0,T ;V ) + | · |L2(0,T ;D(A)).
Or explicitly,

|f |2XT = sup
0≤t≤T

|f (t)|2 +
∫ T

0
|f (s)|2Vds,

|f |2YT = sup
0≤t≤T

|f (t)|2V +
∫ T

0
|Af (s)|2ds.

Let K be the map in YT defined by

K (u)(t) =
∫ t

0
S(t − s)B(u(s))ds, t ∈ [0,T], u ∈ YT .
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The following is a crucial lemma for the proof of existence and uniqueness.

Lemma 3.4.2. There exists c > 0 such that for every u, v ∈ YT ,
|K (u)|2YT ≤ c|u|2YT

√T,

|K (u) − K (v)|2YT ≤ c|u − v|2YT (|u|2YT + |v|2YT )√T.
Proof. Recall classical facts due to Lions [73],

• for any f ∈ L2(0,T ; H), the function t 12 x(t) = ∫ t0 S(t − s)f (s)ds belongs to YT and
• the map f 12 x is continuous from L2(0,T ; H) to YT .

We remark that the second fact implies ∫ t0 |f (s)|2Hds < ∞ Now because B(u) ∈ L2(0,T ; H), that
is ∫ t0 |B(u(s))|2Hds, using the previous classical facts, combine with (3.55) one has,

|K (u)|2YT ≤ c1
∫ T

0
|B(u(s))|2Hds

≤ c2
∫ T

0
|u|2V |u|V |Au|dt

≤ c2 sup
0≤t≤T

|u(t)|2V
∫ T

0
|u(t)|V |Au(t)|dt

≤ c2
2 sup

0≤t≤T
|u(t)|2V

(∫ T

0
|u(t)|2V + |Au(t)|2dt

)

≤ c3|u|4YT

√T.
Similarly, combine Lions’ results and (3.55), one has

|K (u) − K (v)|2YT ≤ c4
∫ T

0
|B(u − v, u) + B(v, u − v)|2Hdt

≤ c5
∫ T

0
|B(u − v, u)|2H + |B(v, u − v)|2Hdt

≤ c5
∫ T

0
c7|u − v|2V |u|V |Au| + c8|u − v|2V |v|V |Av|dt

≤ c|u − v|2YT (|u|2YT + |v|2YT )√T.
!

Lemma 3.4.3. Assume that α ≥ 0, z ∈ L4loc([0,∞);L4(S2) ∩ H), f ∈ H and v0 ∈ V . Then, there
exists unique solution of (3.73) in the space C(0,T ; V ) ∩ L2(0,T ; D(A)). for all T > 0.
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Proof. First let us prove local existence and uniqueness. Let Yτ = C(0, τ; V ) ∩ L2(0, τ; D(A)) be
equipped with the norm

|f |2Yτ = sup
t≤τ

|f (t)|2 +
∫ τ

0
|Af (s)|2 ds,

and Let Γ be a nonlinear mapping in Yτ as

(Γv)(t) = S(t)v0 +
∫ t

0
S(t − s)(f − B(v(s) + z(s)) + αz(s))ds.

Now recall the following classical result due to Lion.
⎧⎪⎪⎨
⎪⎪⎩

A1 S(·)v0 ∈ Yτ, ∀ v0 ∈ H, τ > 0;
A2 The map t 12 x(t) = ∫ t0 S(t − s)f (s)ds belongs to Yτ for all L2(0, τ; H);
A3 The mapping f 12 x is continuous from L2(0, τ; H) to Yτ.

Note, our assumption z(t) ∈ L4([0,∞); L4(S2) ∩ H) implies z(t) ∈ Yτ as z(t) is square integrable
and V can be continuously embedded into L4(S2) .
The first step is to show Γ is well defined. Using assumptions A1 and A2 and the assumption
for z(t), together with Young inequality, one can show

|Γ|2Yτ ≤ c |S(t)v0|2Yτ + c
∣∣∣∣
∫ t

0
S(t − s)B(v(s) + z(s))ds

∣∣∣∣
2

Yτ
+ c

∣∣∣∣
∫ t

0
S(t − s)fds

∣∣∣∣
2

Yτ
+ cα

∣∣∣∣
∫ t

0
S(t − s)z(s)

∣∣∣∣
2

Yτ
.

For some different constant c. Now due to A1 and A2, the first and third terms are finite, due
to A2 and the trilinear inequality (3.52), the second term is finite, and the last term also finite
due to the assumption on z(t)

|Γ|2Yτ ≤ c1 + c2|v|4Yτ + c3 + c4. (3.138)
Whence the map Γv is well defined in Yτ and Γ maps Yτ into Yτ itself.
Now we have

|Γ(v1) − Γ(v2)|2Yτ
≤ |
∫ τ

0
S(t − s)(B(v1(s) + z(s)) − B(v2(s) + z))ds|2Yτ

≤ c6|v1 − v2|2Yτ (|v1 + z|2Yτ + |v2 + z|2Yτ )
√τ,

for all v1, v2 and z in Yτ. Therefore, for sufficiently small τ > 0, Γ is a contraction in a closed
ball of Yτ , yielding existence and uniqueness of a local solution of (3.76) in Yτ. That is, the
solutions are bounded in V on some short time [0, τ).
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Remark. If the following map

(Γu)(t) = S(t)u0 −
∫ t

0
S(t − s)B(u(s))ds +

∫ t

0
S(t − s)fds +

∫ t

0
S(t − s)GdL(s)

is used to prove contraction. Then one would have to assume
∫ T

0
|Az(t)|2dt < ∞.

The local existence and uniqueness results indicates that the solution can be extended up to
the maximal lifetime Tf ,z and then is well defined on the right open interval [0,Tf ,z). Next, we
will prove the local solution may be continued to the global solution valid for all t > 0, in
the class of weak solutions satisfying a certain energy inequality. (This is an analogue of the
well-known fact that the deterministic 2D NSE has a unique global strong solution. See for
instance Theorem 7.4 Foias and Temam [55])
It suffices to find an uniform a priori estimate for the solution v in the space YT0 such that for
any T0 ∈ [0,Tf ,z):

|v|2YT0
≤ C for all T0 ∈ [0,Tf ,z), (3.139)

where C is independent on T0. This uniform a priori estimate along with the local existence
uniqueness proved earlier yields the unique global solution u in YT,z indeed exist globally in
time. Hence one can deduce that the solution is well defined up to time t = Tf ,z , at this point
in time the iterated process could be repeated and the solution can be found in [Tf ,z, 2Tf ,z] and
so forth, hence in C(0,∞; V ) ∩ L2loc(0,∞; D(A)). To prove (3.139), we first need to show

|v|XT0 ≤ c0.
Toward the above end, we work with a modified version of (3.75)⎧⎨

⎩
∂tv + νAv = −B(v) − B(v, z) − B(z, v) − Cv + F ,
v(0) = v0,

(3.140)

where F = −B(z) + αz + f is an element of H since the H norm of all its three terms is
bounded. Now multiply both sides with v , integrate over S2, one gets

∂t |v|2 + ν|v|2V = −b(v, v, v) − b(v, z, v) − b(z, v, v) − (Cv, v) + ⟨F , v⟩
= b(v, v, z) + (F , v).

Now by (3.50), one has
|b(v, v, z)| ≤ c|v||v|V |z|
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then apply Young inequality with ab = √ ε
2 |v|V |v|

√
2
ε |z|V it follows that

≤ ε|v|2V
4 + 1

ε |v|2|z|2V .
On the other hand,

(F (t), v) = |F (t)||v| ≤ 1
ε |F (t)|2 + ε

4 |v|2.
So

∂t|v|2 + (2ν − ε
2)|v|2V ≤ 2

ε |v|2|z|2V + 2
ε |F (t)|2 + ε

2 |v|2 (3.141)
for all ε > 0.
By integrating in t from 0 to T , after dropping out unnecessary terms,
∫ T

0
|v(t)|2V ≤ 1

2ν − ε
2

(
|v(0)|2 + 2

ε
∫ T

0
|v(t)|2|z(t)|2Vdt + 2

ε
∫ T

0
|F (t)|2dt + ε

2
∫ T

0
|v(t)|2dt

)
≤ K1,
(3.142)

since v(0) = u0

K1 = K1(u0,F , ν,T, z).
On the other hand, by integrating in t of (3.141) from 0 to s, 0 < s < T , we obtain

|v(s)|2 ≤ |u0|2 + 2
ε
∫ s

0
|v(t)|2|z(t)|2Vdt + 2

ε
∫ s

0
|F (t)|2dt + ε

2
∫ s

0
|v(t)|2dt,

sup
s∈[0,Tf ,z]

|v(s)|2 ≤ K2,

K2 = K2(u0,F , ν,T, z) = (2ν − ε
2)K1.

Hence, for any ε such that ε
2 < 2ν, apply Gronwall lemma to

∂t|v|2 ≤
(2
ε |z|2V + ε

2
)

|v|2 + 2
ε |F (t)|2,

one obtains
|v(t)|2 ≤ |v(0)|2 exp

(∫ t

0
2
ε |z(τ)|2V + ε

2dτ
)

|v|2 +
∫ t

0
2
ε |F (s)|2 exp(

∫ t

s

(2
ε |z(τ)|2V + ε

2
)
dτ)ds,

and so
sup

t∈[0,Tf ,z]
|v(t)|2 ≤ |v(0)|2 exp

(∫ Tf ,z

0
2
ε |z(τ)|2V + ε

2dτ
)

+
∫ Tf ,z

0
2
ε |F (s)|2 exp(

∫ Tf ,z

s

(2
ε |z(τ)|2V + ε

2
)
dτ)ds.
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To avoid clumsiness, write momentarily Tf ,z = T . Let

ψT (z) = exp
(∫ T

0
2
ε |z(τ)|2V + ε

2dτ
)

< ∞, cF =
∫ T

0
2
ε |F (s)|2 exp

(∫ T

s

(2
ε |z(τ)|2V + ε

2
)
dτ
)
ds.

(3.143)
So

sup
t∈[0,T]

|v(t)|2 ≤ |v(0)|2ψT (z) + cF , (3.144)

which implies
v ∈ L∞([0,T]; H). (3.145)

Now integrate
∂t|v|2 + ν|v|2V ≤

(2
ε |z|2V + ε

2
)

|v|2 + 2
ε |F (t)|2, (3.146)

from 0 to T one gets

|v(T)|2 + ν
∫ T

0
|v(t)|2Vdt ≤ (ψT (z)|v(0)|2 + cF

) ∫ T

0

(2
ε |z(t)|2 + ε

2
)
dt + 2

ε
∫ T

0
|F (t)|2dt + |v(0)|2,

(3.147)
which implies

v ∈ L2([0,T]; V ), (3.148)
and v is indeed a weak solution. To show v ∈ C([0,T]; H), note that A : V → V ′ is bounded
and Av ∈ L2([0,T]; V ′). Then F ∈ L2([0,T]; V ′) since z ∈ L4([0,T]; L4(S2) ∩ H) which can be
continuously embedded into V ′, and the terms B(z), B(v, z), B(z, v) all in L2([0,T]; V ′). Combine
these facts and (3.148), invoke lemma 4.1 in [14] we conclude that v ∈ C([0,T]; H).
The uniform apriori estimate (3.147) implies that the solution is well defined up to time t = Tf ,z .
The iterative process may be repeated start from t = Tf ,z with the initial condition z(t) and
the solution is uniquenely extended to [0, 2Tf ,z] and so on to arbitrary large time.
Now, multiply (3.140) both sides with Av , noting again the classical fact 1

2∂t|v(t)|2 = (∂tv(t), v(t))
and (Cv,Av) = 0, integrate over S2, one gets

(∂tv,Av) + ν(Av,Av) = −b(v, v,Av) − b(v, z,Av) − b(z, v,Av) + ⟨F (t),Av(t)⟩

KB 1
2
d+

dt |v|2 + ν|Av|2 = −b(v(t), v(t),Av(t)) − b(v(t), z(t),Av(t)) − b(z(t), v(t),Av(t)) + ⟨F (t),Av(t)⟩.
(3.149)

Now,
|b(v, v,Av)| ≤ C|v| 1

2 |v|V |Av| 3
2 ∀ v ∈ V , v ∈ D(A),
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|b(v, z,Av)| ≤ C|v| 1
2 |v| 1

2V |z| 1
2V |Av| 3

2 ∀ v ∈ V , v ∈ D(A),

|b(z, v,Av)| ≤ C|z| 1
2 |z| 1

2 |v| 1
2V |Av| 3

2 ∀ z ∈ V , v ∈ D(A).
Also,

(F (t),Av) ≤ ε
4 |Av(t)|2 + 1

ε |F (t)|2.

Furthermore, using Young inequality with the choice p = 4
3 and ab = (εp) 1

p |Av|3/2εp)− 1
p |v|1/2|v|V ,

the above estimates of the three bilinear terms become
|b(v, v,Av)| ≤ C|v| 1

2 |v|V |Av| 3
2

≤ ε|Av|2 + C(ε)|v|2|v|4V ,

|b(v, z,Av)| ≤ C|v| 1
2 |v| 1

2V |z| 1
2V |Av| 3

2

≤ ε|Av|2 + C(ε)|v|2|v|2V |z|2V ,

|b(z, v,Av)| ≤ C|z| 1
2 |z| 1

2V |v| 1
2V |Av| 3

2

≤ ε|Av|2 + C(ε)|z|2|z|2V |v|2V .
Therefore,

d+

dt |v|2V + (2ν − 3ε − ε
4)|Av|2 ≤ C(ε)(|v|2|v|4V + |v|2|v|2V |z|2V + |z|2|z|2V |v|2V ) + 1

ε |F (t)|2. (3.150)
Momentarily dropping the term |Av(t)|2, we have the differential inequality,

y ′ ≤ a + θy,
y(t) = |v|2V , a(t) = 1

ν |F (t)|2, θ(t) = C(ε)(|v|2|v|2V + |v|2|z|2V + |z|2|z|2V ).
Then for any ε such that ε < 8

13ν, using Gronwall lemma , one has
d+

dt
(
y(t)e− ∫ t0 θ(τ)dτ

)
≤ a(t)e− ∫ t0 θ(τ)dτds

|v(t)|2V ≤ |v(0)|2V exp
(∫ t

0
C(ε)(|v(τ)|2|v(τ)|2V + |v(τ)|2|z(τ)|2V + |z(τ)|2|z(τ)|2V )dτ

)

+ 1
ν
∫ t

0
|F (s)|2 exp

(∫ t

s
C(ε)(|v(τ)|2|v(τ)|2V + |v(τ)|2|z(τ)|2V + |z(τ)|2|z(τ)|2V )dτ

)
ds

sup
t∈[0,T]

|v(t)|2V ≤ K3, (3.151)

118



K3 = K3(u0,F , ν,T, z) =
(

|v(0)|2V + 1
ν
∫ T

0
|F (s)|2ds

)
exp(C(ε)K2K1),

which implies
v ∈ L∞(0,T ; V ). (3.152)

Let us now come back to (3.150), which we integrate from 0 to T , after dropping some unnec-
essary terms, we have

∫ T

0
|Av(t)|2dt ≤ K4,

and
K4 = K4(u0,F , ν, z,T)

= 1
2ν − 3ε − ε

4
(|u0|2 + C(ε) sup

t∈[0,T]
|v(t)|2|v(t)|4V + C(ε) sup

t∈[0,T]
|v(t)|2|v(t)|2V |z(t)|2V

+ C(ε) sup
t∈[0,T]

|z(t)|2|z(t)|2V |v(t)|2V + 1
ε
∫ T

0
|F (t)|2)dt.

As
sup
t∈[0,T]

|v(t)|2 ≤ K2,
sup
t∈[0,T]

|v(t)|4V ≤ K2
3,

|z(t)|2V ≤ C1,
sup
t∈[0,T]

|z(t)|2 ≤ C2.

So,
K4 = 1

2ν − 3ε − ε
4
(|u0|2 + C(ε)K2K2

3 + C(ε)K2K3C1 + C(ε)C2C1K3 + 1
ε
∫ T

0
|F (t)|2)dt.

This implies
v ∈ L2(0,Tf ,z; D(A)). (3.153)

It remains to show v ∈ C([0,T]; V ). Note, the fact that the solution with v0 ∈ V is in L2([0,T]; V )
implies that a.e. in [0,T], v(t) ∈ V . Moreover, since v(t) ∈ C([0,T]; H) as previously deduced,
and is unique as proved in step 1. It follows that u ∈ C([0,T]; V )
With the uniform a priori estimate along with the local existence uniqueness in step 1, we
conclude that there exists unique u ∈ C(0,∞; H) ∩ L2(0,∞; V ) ⊂ C(0,∞; V ) ∩ L2(0,∞; D(A)), for
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any given u0 ∈ V , f ∈ H , z(t) ∈ L4loc([0,∞);L4(S2)∩H). Moreover, our promising a priori bound
(3.151) yields T = ∞. !

3.4.2 Existence and uniqueness of strong solution with v0 ∈ H
Corollary 2. If f ∈ H , v0 ∈ H , z(t) ∈ L4loc([0,∞);L4(S2) ∩ H), then v(t) ∈ V for all t > 0.
We follow the proof in [19]. The idea stems from standard approximation method commonly
used in PDE theory. In view of the a priori estimate (3.150) one takes approximated solution
to (3.73) in YT , show the approximates converge. Then show the limit function indeed satisfies
(3.73).
Let (v0,n) ⊂ V be a sequence converging to v0 in H. For all n ∈ N, let vn be solution of equation
(3.73) in YT corresponding to intial data v0,n. Similar to the case when v0 ∈ V , one can find
constant such that |vn|XT ≤ c, ∀n ∈ N. Follow the same lines as in the proofs of (3.145) and
(3.148), vn can be proved to be a weak solution.
Moreover, for n,m ∈ N, take vn,m = vn − vm with v0n,m = v0n − v0m. Then vn,m is the solution of
⎧⎨
⎩
∂tvn,m + νAvn,m = −B(vn,m, z) − B(z, vn,m) − B(vn,m, vn) − B(vm, vn,m) − Cvn,m,
vn,m(0) = v0n − v0m

(3.154)

Multiply (3.154) both sides with vn,m and integrate against vn,m, using again Lemma 3.1.5 and
(3.48) and noting (3.38) one gets

∂t|vn,m|2 + 2ν|vn,m|2V = −2b(vn,m, z, vn,m) − 2b(vn,m, vn, vn,m)
Since |b(w,w, z)| ≤ C|w||w|V |z|V and |b(w,w, v)| ≤ C|w||w|V |v|V

≤ C|vn,m||vn,m|V (|z|V + |vn|V )
Then via usual Young inequality with a = ε|vn,m|V and b = C√ε |vn,m|(|z|V + |vn|V ),

≤ ε|vn,m|V
2 + C

2ε |vn,m|2(|z|2V + |vn|2V ). (3.155)
Therefore, for any ε > 0 such that ε

2 < 2ν, one applies Gronwall lemma to
∂t|vn,m|2 ≤ C

2ε (|z|2V + |vn|2V )|vn,m|2,
and combine with v0n,m = v0n − v0m , it is easy to show

|vn,m(t)|2 ≤ |vn,m(0)|2 exp
( C

2ε (
∫ T

0
|z(t)|2V + |vn(t)|2V )|vn,m(t)|2dt

)
< ∞,

as ∫ T
0 |z(t)|2V + |vn(t)|2V < ∞. Hence vn,m converges in T and so is Cauchy in T . That is, for any

ε > 0, ∃ N ∈ N such that |vn − vm| < ε whenever n,m ≥ N.
Let the limit of of vn be v. It remains to show v indeed satisfies (3.73).
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Let vn be the solution to
vn(t) = S(t)v0,n −

∫ t

0
S(t − s)(B(un(s)))ds + α

∫ t

0
zn(s)ds, (3.156)

where zn = ∫ t0 S(t − s)GdLn(t). We would like to show

limn→∞un(t) = S(t)u0 −
∫ t

0
S(t − s)(B(u(s)))ds +

∫ t

0
S(t − s)fds + α

∫ t

0
z(s)ds. (3.157)

Assume fn → f in L2(0,T ; H) , zn = ∫ t
0 S(t − s)GdLn(t) → z in L4([0,T]; L4(S2) ∩ H), we would

like to check if
limn→∞ B(un) = B(u) in H. (3.158)

For this, note first that
∣∣|un|2V − |u|2V

∣∣ = |(un, un) − (u, u)|
= |(un, un)V − (u, un)V + (u, un)V − (u, u)V |
= |(un, un)V − (u, un)V | + |(u, un)V − (u, u)V |
≤ |un − u|V |un|V + |u|V |un − u|V .

Now |un|V is Cauchy and so is bounded. So un converges to u in V as n → ∞. Then using
(3.50) one deduces that

|B(un) − B(u)|
= |B(un, un) − B(un, u) + B(un, u) − B(u, u)| ≤ C(|un|2V + |un|2V |u| + |u|2V ) → C|u|2V .

Now similar to the earlier work on proving contraction we have,
|B(un(s)) − B(u(s))|2YT

≤
∣∣∣∣
∫ t

0
S(t − s)(B(un(s)) − B(u(s)))ds

∣∣∣∣
2

YT

≤ c
∫ T

0
|B(un(s)) − B(u(s))|2ds

≤ c|u|2T
√T.

Therefore, B(un) − B(u) is in L2(0,T ; H). Now by continuity argument again, one has

limn→∞

∫ T

0
S(t − s)B(un(s))ds =

∫ T

0
S(t − s)B(u(s))ds,

and
limn→∞

∫ T

0
S(t − s)fn(s)ds =

∫ T

0
S(t − s)f (s)ds.
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Combine with the assumptions
limn→∞ S(t)u0,n = S(t)u0,

limn→∞ zn(t) = z(t),
one deduces that

limn→∞ vn(t) = v(t).
and there exists a solution to (3.73). However, the solution constructed as the limits of un
leaves open the possibility that there is more than one limit. So we will now prove u is unique.
The idea is analogous to proving (3.155). Nevertheless we detail as following. Suppose v1, v2
are two solutions of (3.75) with the same initial condition. Let w = v1 − v2, then w satisfies⎧⎨

⎩
∂tw + νAw = −B(w, z) − B(z,w) − B(w, v1) − B(v2, w),
w(0) = 0. (3.159)

Multiply (3.159) both sides with w and integrate against w , using the identities ∂t|v(t)|2 =
2⟨∂tv(t), v(t)⟩ again in Temam and (3.48) one gets

∂t |w|2 + 2ν|w|2V = −2b(w, z,w) − 2b(w, v1, w)
Since |b(w,w, z)| ≤ C|w||w|V |z|V and |b(w,w, v)| ≤ C|w||w|V |v|V

≤ C|w||w|V (|z|V + |v1|V )
Then via usual Young inequality with a = √ε|w|V and b = C√ε |w|(|z|V + |vn|V )

≤ ε|w|V
2 + C

2ε |w|2(|z|2V + |v1|2V ). (3.160)
Therefore, for any ε > 0 such that ε

2 < 2ν, one applies Gronwall lemma to
∂t|w|2 ≤ C

2ε (|z|2V + |v1|2V )|w|2,
and combine with w0 = v1,0 − v2,0 = 0, it follows from Gronwall inequality that

|w(t)|2 ≤ |w(0)|2 exp
( C

2ε (
∫ T

0
|z(t)|2V + |v1(t)|2V )|w(t)|2dt

)
< ∞

as ∫ T
0 |z(t)|2V + |v1(t)|2dt < ∞. Now, since w(0) = 0, necessarily w(t) must be 0.

It remains to show v ∈ C((0,T ; V ), as observe from the above energy inequality (3.155), the
solution starts with with an initial condition v0 ∈ H belongs to L2(0,T ; V ). This implies that
almost everywhere in (0,T], there must exist a time point ε (and ε < T) such that u(ε) ∈ V .
Then one may repeat step 2 to another interval [ε, 2ε], [2ε, 3ε] · · · . and over the whole [ε,∞].
Finally we obtain that u ∈ C([ε,T]; V )∩L2([ε,T]; D(A)) for all ε > 0. Note that T = ∞ as implied
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from the a apriori estimate.

In summary, in this section, we have proved

Lemma 3.4.4. Assume that α ≥ 0, z ∈ L4loc([0,∞);L4(S2) ∩ H), f ∈ H and v0 ∈ H. Then,
there exists unique solution of (3.76) in the space C(0,T ; H) ∩ L2(0,T ; V ). which belongs to
C(ε,T ; V ) ∩ L2loc(ε,T ; D(A)) for all ε > 0. and T > 0.

Combine Lemma 3.4.4 with 3.4.3, we have proved theorem 3.2.15.

Remark. Continuous dependence on v0, z and f is implied from the point where local existence
and uniqueness is attained and hence holds also for global solutions.
Finally, we give an intuitive meaning of Theorem 3.2.15.

Remark. The proof of Theorem 3.2.15 shows that the solution v , starting from v0 ∈ H , belongs
to V for a.e. t ≥ t0; If we take any t̄ ≥ t0 such that v(t̄) ∈ V , the solution is extended over the
interval [t0, t0 + ε] and is found to be in D(A) as well. One may repeat this step over another
intevral [t0 + ε, t0 + 2ε], [t0 + 2ε, t0 + 3ε] · · · . Thus, we obtain that v ∈ C([t0 + ε,∞); V ) ∩ L2loc(t0 +
ε,D(A)).
Furthermore, provided the noise does not degenerate, base on the condition given in the
following, we obtained the existence and uniqueness results for the solution to the original
equation (3.61). We detail this in the next subsubsection.
If ∑

l
λ β

2 |σl|β < ∞, (3.161)
then by Lemma 3.2.4 the process z has version which has left limits and is right continuous
in V . Recall that ut := vt + zt and for each T > 0, define

ZT (ω) := sup
0≤t≤T

|zt(ω)|V , ω ∈ Ω. (3.162)

If (3.161) holds then by Lemma 3.2.2 we have
EZT < ∞,

hence there exists a measurable set Ω0 ⊂ Ω such that P (Ω0) = 1 and
ZT (ω) < ∞, ω ∈ Ω0 .
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Finally, let us study (3.61) for ω ∈ Ω0. Since z(·, ω) ∈ D([0,∞); V ), it is of course z(·, ω) ∈
D([0,∞); H). Therefore, by Theorem (3.2.12), u(·, ω) = v(·, ω) + z · (ω) is the unique cádlág
solution to (3.61). So, we extend the existence theorem of strong solution for u. Moreover,
for ω ∈ Ω0 we find that u(·, ω) = v(·, ω) + z(·, ω) is the unique solution to (3.61) in D([0,∞); H) ∩
D([0,∞); V ) which belongs to D([h,∞); V ) ∩ L2loc(h,∞); D(A)) for all h > 0. If u0 ∈ V , then
u ∈ D([h,∞); V ) ∩ L2loc([h,∞); D(A)) for all h > 0, T > 0.
This completes the proof of Theorem 3.2.16.
Since the solution is constructed using Banach Fixed Point Theorem, the continuous depen-
dence on initial data is implied from the existence-uniqueness proof of strong solution in above
line. Moreover, our existence uniqueness results work naturally when initial time t0 ∈ R other
than 0. More precisely, we state the following result on existence, uniqueness of strong solution
and continuous dependence on initial data which holds for all t ∈ R.

Theorem 3.4.5. For P-a.s. ω ∈ Ω, there hold
• For all t0 ∈ R and all v0 ∈ H , there exists a unique solution v ∈ C([t0,+∞]; H) ∩

L2loc([t0,+∞); V ) of equation (4.26) with initial value v0.
• If v0 ∈ V , then the solution belongs to C([t0,+∞); V ) ∩ L2loc([t0,+∞); D(A)).
• hence, for every ε > 0, v(t) ∈ C([t0 + ε,+∞); V ) ∩ L2loc([t0 + ε,+∞); D(A)).
• Denoting the solution by v(t, t0;ω, v0), then the map v0 12 v(t, t0;ω, v0) is continuous

for all t ≥ t0, v0 ∈ H .
Theorem 3.4.5 implies the existence uniqueness of stochastic flow which is important for our
study of RDS in the next chapter.

3.5 Invariant measures
The notion of invariant measure arises in Ergodic theory, which is an area concerns with the
study of qualitative distributional properties of typical orbits of a dynamical system and that
these properties are presented regarding measure theory. Roughly speaking, an invariant
measure µ is a statistical stationary solution which represents the long-time behaviour of a
given dynamical system. Moreover, if a given invariant measure µ can be proven to be unique,
then it is possible that the probability law of the solution will converge to µ. Hence, the unique
invariant measure dictates the statistical equilibrium to which the system approaches give rise
to the so-called ergodic measure. The rationale stems from the Birkhoff’s Ergodic Theorem
(see [7, 36]): given some time interval [0,T], the time average on a time interval converges to
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the spatial average:
1
T
∫ T

0
P(t)φdt = 1

T
∫ T

0
φ(u(t))dt →

∫
φ(u)µ(du)

for all observables φ of a given system and given initial condition u0. Such a result has not
been possible for the deterministic Navier-Stokes equation. This is what motivates one to study
Navier-Stokes equation perturbed by noise.
The proof of the existence of invariant measure under conditions on the function and space
is given by the Krylov-Bogolyubov argument.
Let E be a Polish space. Let E = B(E) be the sigma field of all Borel subset of E and for
Γ ∈ E, let IΓ be the characteristic function

IΓ(x) =
⎧⎨
⎩

1, if x ∈ Γ
0, if x ∈ Γc,

where Γc = E\Γ. Moreover Let Bb(E), Cb(E) denote the set of bounded Borel measurable
(respectively bounded continuous function) and let P denotes the space of probability measures
on E. Given (uxt : x ∈ H, t ≥ 0), a family of time-homogeneous E-valued Markov processes
indexed by x =: ux0 , define, ∀ t ≥ 0, x ∈ E, Γ ∈ E, (Pt), (P∗t ) and (P(t, x, ·)) respectively the
markov semigroup on Bb(E), adjoint Markov semigroup on P and transition probability
measures on E . More precisely, for any t ≥ 0

Pt : B(E) → B(E) Ptf (x) = Ef (uxt ) =
∫

E
f (y)P(t, x, dy), f ∈ Bb(E), x ∈ E, (3.163)

and
P∗
t : P → P, P∗

t µ(Γ) =
∫

E
P(t, x,Γ)µ(dx). (3.164)

One can easily check that
⟨Ptf ,µ⟩ = ⟨f ,P∗

t µ⟩, ∀ f ∈ Bb(E), µ ∈ B(E).
As a consequence of the definition of transition probability measures, one can define the
markov transition functions as

P(t, x,Γ) = Pt1Γ(x) = L(uxt ), t ≥ 0, x ∈ E,Γ ∈ B(E). (3.165)
To study asymtotic properties of the transition semigroup Pt , one has to study invariant mea-
sures. A Borel probability measure µ in H is said to be invariant with respect to Pt if

P∗
t µ(Γ) :=

∫
E

Pt(x,Γ)µ(dx) = µ(Γ), ∀Γ ∈ B(E), (3.166)
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or equivalently ∫
E
fdµ =

∫
E

Ptfdµ ∀t ≥ 0, f ∈ Bb(E).
An important class of invariant measure is the ergodic measures.

Definition 3.5.1. Let µ be an invariant Borel measure on E for Pt . A Borel set Γ is said to be
an invariant set with respect to semigroup Pt if for any t ≥ 0,

Pt1E = 1E, µ a.s.
The measure µ is said to be ergodic if µ(Γ) is either 0 or 1 for any invariant set Γ.

Proposition 3.5.2. If µ is an invariant measure for Pt , then µ is ergodic if

limT→∞
1
T
∫ T

0
Ptφdt = φ̄ for all φ ∈ L2(E,µ),

where
φ̄ =

∫
E
φ(x)µ(dx).

Proof. Let φ = IΓ, then

limT→∞
1
T
∫ T

0
PtIΓdt = ĪΓ =

∫
E

IΓ(x)µ(dx) = µ(Γ),
as IΓ is either 0 or 1.
Finally, as IΓ = ĪΓ can only be 0 or 1, then µ(Γ) can be either 0 or 1 and so µ is ergodic. !

The following theorem due to Doob is fundamental for the study of uniqueness of invariant
measure [100].

Theorem 3.5.3. Let µ be an invariant measure for the Markov family (ux, x ∈ E). If the
corresponding semigroup Pt is irreducible and strong feller, then µ is the unique invariant
measure, and hence, ergodic.

Proof. Step 1 Prove that the family of probability measures (Px(t, ·) : x ∈ E) are mutually
equivalent for each t > 0.
This question boils down to how one proves two measures are equivalent, that is to show
whether the two measures agree with an arbitrary set. If µ(A) = 0 = ν(A), then clearly it does
not distinguish the null set. Then if we have a set with positive probability starts at x0, the
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same should hold for any x ∈ E. With this in mind, one first needs to show for any x0 > 0, if
we let Γ be such that, if we take any x0 ∈ E Px0 (t,Γ) > 0.
To this end, pick any t, s > 0. Assume that Px(t + s,Γ) > 0 for some x ∈ E , and Γ ∈ E. By the
property of the Chapman-Kolmogorov equation,

Px(t + s,Γ) =
∫

E
Px(t, dy)Py(s,Γ).

Therefore, there exists a y0 such that Py0(s,Γ) > 0. By the strong Feller property, Py(s,Γ)
is a continuous function of y . Hence, there exists a neighborhood of y0, Br(y0) such that
Py(s,Γ) > 0 for all y ∈ Br(y0). So, for any arbitrary x ∈ E ,

Px(t + s,Γ) =
∫

E
Px(t, dy)Py(s,Γ) ≥

∫
Br (y0)

Px(t, dy)Py(s,Γ) > 0,

since Px(t,Br(y0)) > 0 and Py(s,Γ) for all y ∈ Br(y0) by irreducibility. Thus Px(t + s,Γ) > 0 for
all x ∈ E.
Step 2 Now let Γ ∈ E be an invariant set

Pt1Γ = 1Γ, ∀ t > 0
such that µ(Γ) > 0. One has to show that µ(Γ) = 1 By step 1, the family of probability
measures Px(t, ·) indexed by x are equivalent, so that Px(t,Γ) = 1 for all x ∈ E. Moreover, by
the invariance of µ, it follows that

µ(Γ) =
∫

E
Px(t,Γ)dµ(x) = 1.

Thus µ is ergodic. If ν is another invariant measure, then ν can be shown to be ergodic by
repeating the above argument. Being invariant measures, both µ and ν are equivalent to Px(t, ·)
for any x and t. Therefore µ and ν are equivalent. Now it is well known that if µ and ν are two
ergodic measures with respect to Pt and if µ ̸= ν, then µ and ν are singular. Hence µ = ν. !

In this section we are concerned with the existence of an invariant measure of the solution u
to the abstract equation (3.61) with the same assumptions used for Stokes operator A, bilinear
operator B, operator G and noise L(t).
In the last section we proved existence and uniqueness of a weak solution Theorem 3.2.11,
strong solutions Theorem 3.2.15 and the solution depends continuously on initial data Theorem
3.2.12. It is well known (see for instance Chapter 9 of [87]) that strong solution implies a weak
solution, and the weak solution is equivalent to a mild solution. Hence the three concepts of
solutions are equivalent. With the aid to these results, our main aim in this chapter is to study
the large time behaviour of u, that is, the law L(u(t, x)) as t → ∞. In particular, we prove (3.61)
admits at least one invariant measure Here we consider a general cadlag Markov process,

(Ω, {F0
t }t≥0,F, {uxt }t≥0, (Px)x∈H ) (3.167)
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whose transition probability is denoted by {P(t, x, dy}t≥0, where Ω := D([0,∞); H) is the space
of the càdlàg function from [0,∞) to H equipped with the Skorokhod topology, F0t = σ{us, 0 ≤
s ≤ t} is the natural filtration. Now denote (resp.) by Cb(H), Bb(H) the space of bounded
continuous functions and the space of bounded borel measurable functions on H. That is,

Cb(H) := {φ : H → R : φ is continuous and bounded}, (3.168)
Bb(H) := {φ : H → R : φ is bounded and borel measurable}. (3.169)

For all φ ∈ Bb(H), define4

Ptφ(x) =
∫

H
φ(y)P(t, x, dy), ∀ t ≥ 0, x ∈ H.

For any t ≥ 0, Pt is said to be Feller if
φ ∈ Cb(H) → Ptφ ∈ Cb(H), ∀ t ≥ 0. (3.170)

Pt is said to be strong Feller if (3.170) holds for a larger class of function: φ ∈ Bb(H). Moreover,
Pt is said to be irreducible in H , if Pt1A(x) = Px(t,A) > 0 for any x ∈ H and any non-empty
open subset A of H . If Pt is irreducible then any invariant measure µ is full, that is, one has
µ(B(x, r)) > 0 for any ball B(x, r) of center x ∈ H and radius r. Indeed, it follows from (3.166)
that

µ(B(x, r)) =
∫

H
Pt1A(x)µ(dx) > 0.

The main theorem proved in this section is Theorem 3.2.17, which we restate here for readers’
convenience

Theorem. Assume additionally, that there exists m > 1 such that σl = 0 for all l ≥ m. Then
the solution u to (3.61) admits at least one invariant measure.
We claim that the SNSE (3.61) has an invariant measure. The key to proving this is to use
the Krylov-Bogolyubov Theorem (named after Russian-Ukrainian mathematicians and theo-
retical physicists Nikolay Krylov and Nikolay Bogolyubov), which guarantees the existence of
invariant measures for certain well-defined maps defined on some well-defined space. More
precisely, the theorem states that,

Theorem 3.5.4 (Krylov-Bogolyubov). Assume (Pt , t ≥ 0) is a Feller semigroup. If there exists
a point x ∈ H for which the family of probability measure {µt(x, ·)}t≥0 is uniformly tight,
that is, there exists a compact set Kε ⊂ H such that µ(Kε) ≥ 1−ε for any µ ∈ Λ on (H,B(H))
then there exists at least one invariant measure.
4Alternatively, Ptφ(x) = Exφ(u(t)) = Eφ(u(t, x)) = ∫ φ(y)µx,t (dy).
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Corollary 3. If for some ν ∈ P and some sequence Tn ↑ +∞ the sequence {P∗Tnν} is tight,
then there exists an invariant measure for (Pt , t ≥ 0).

We shall remark that there are various versions of Krylov-Bogolyubov theorem which conveys
the same idea. All that required to be proved are Feller, Markov property of the solution v (and
so u) and convergence of the family of probability measures {µt , t ≥ 0} in H . This is compara-
ble to the concept of weak convergence of distribution in finite dimension (equivalence to weak
convergence of r.v.). However, in infinite dimension, the convergence of distribution is more
involved. Hence extra conditions are needed besides the convergence of finite-dimensional
distributions.
Note that, it is known that tightness is a necessary condition to prove convergence of proba-
bility measure, especially when measure space is infinite dimensional. In this sense the two
statements of the theorem is equivalent.
The following inequalities would be used quite often.

|Âσe−Ât| ≤ C(σ )t−σ , ∀ σ > 0,

|B(u)|V = ⟨A 1
2 B(u),A 1

2 B(u)⟩ = ⟨AB(u),B(u)⟩ = |A 1
2 B(u)| (3.171)

≤ |u||u| 1
2V |Au| 1

2 , (3.172)

|B(u) − B(v)| ≤ C(|u|2V + |u|2V |v| + |v|2V ),

|B(u)| ≤ C|u| 1
2V |u|V |Au| 1

2 = C|u| 3
2V |Au| 1

2 .

3.5.1 Transition Semigroup
Let us denote by u(·, x) the solution of (3.61). We set

Ptf (x) = Ef (u(t, x)), f ∈ Bb(H), t ≥ 0, x ∈ H.
It follows from uniqueness and time homogeneity of L that the following relation holds,

Pt ◦ Ps = Pt+s.
Recall from our Theorem 3.2.16 that, we have proved there exists a unique strong solution to
(3.61) with the form (3.76) in the space D([0,T ; H) ∩ L2([0,T]; V ) which belongs to D([h,T]; V ) ∩
L2loc([h,T]; D(A)) for all h > 0, T > 0 for every initial condition u0 ∈ H , ω ∈ Ω. Moreover, if
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u0 ∈ V , then u ∈ D([h,T ; V ]) ∩ L2loc([h,T]; D(A)) for all h > 0 and T > 0. The solution depends
continuously on initial data x.
Let u(t;x) be the solution at t starting from x at time 0. Now suppose we have two solutions,
resp. un and u of (3.61) started at ξn and ξ , if the conditions in Theorem 3.2.12 satisfied, then
it follows that un(t) → u(t) a.s. for any t. Therefore, f (un(t)) → f (u(t)) as f is continuous. Thus,
invoke Lesbesgue Dominated Convergence Theorem, one has

Ef (un(t)) → Ef (u(t)). (3.173)
Whence the equation (3.61) defines a Feller Markov process. Then we can define the operator
Pt : Cb(H) → Cb(H) by

Ptf = Ef (u(t;x)),
and Pt is said to be a Feller semigroup.

Lemma 3.5.5. The equation (3.61) defines a Markov process in the sense that
E[f (uxt+s)|Ft ] = Ps(f )(uxt ), (3.174)

for all t, s > 0, f ∈ Cb(H), where uxt denotes5 the solution to (3.61) over [0,∞] starting from
the point u(0) = x, Ft denotes the sigma-algebra generated by L(τ) for τ ≤ t.
By uniqueness,

uxt+s = uuxtt,t+s, (P − a.s.),
where (uηt0,t)t≥t0 denotes the unique solution on the time interval [t0,∞), with the Ft0-measurable
intial condition uηt0,t0 = η. To prove (3.174), it suffices to prove

E[f (uηt,t+s)|Ft ] = Ps(f )(η),
for every H-valued Ft-measurable r.v. η. Note that (3.174) holds for all f ∈ Cb(H), holds for
f = 1Γ where Γ is an arbitrary Borel set of H and consequently for all f ∈ Bb(H). Without loss
of generality, Let us assume f ∈ Cb(H). We know that, if η = ηi P a.s., then the r.v. u(t+ s, t, ηi)
is independent to Ft and therefore

E(f (u(t + s, t, ηi))|Ft) = Ef (u(t + s, t, ηi)) = Pt,t+sf (ηi) = Psf (ηi), P a.s. .
It suffices to prove (3.174) holds for every r.v. η of the form

η =
N∑
i=1

η(i)1Γ(i) ,

5The notation uxt is used interchangeably with u(t;x).
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where η(i) ∈ H and Γ(i) ⊂ Ft is a partition of Ω, ηi are elements of H. Then

u(t + s, t, ηi) =
N∑
i=1

u(t + s, t, ηi)1Γi , P a.s. .

Hence,

E(f (u(t + s, t, η))|Ft) =
N∑
i=1

E(f (u(t + s, t, ηi))1Γi |Ft) P − a.s. .

Take into account the r.v. u(t + s, t, ηi) independent to Ft and 1Γi are Ft measurable, i =
1, · · · , k, one deduces that

E[f (u(t + s, t, η))|Ft ] =
N∑
i=1

Psf (ηi)1Γi = Psf (η), P − a.s. ,

and so (3.61) defines a Markov process in the above sense for all f ∈ Cb(H). Now, let u(t; η)
be the solution of the SNSE (3.61) with initial condiction η ∈ H .
Let (Pt , t ≥ 0) be the Markov Feller semigroup on Cb(H) associated to the SNSE (3.61) defined
as

Ptf (η) = E[f (u(t; η))] =
∫

H
f (y)P(t, y)dy =

∫
H
f (y)µt,s(dy), f ∈ Cb(H), (3.175)

where P(t, x, dy) is the transition probability of u(t; η) and µt,x(dy) is the law of u(t; η). From
(3.175), we have

Ptf (x) = (f ,µt,x) = (Ptf ,µ),
where µ is the law of the initial data η ∈ H . Thus it follows from above that µt,η = P∗t µ. If

P∗
t µ = µ ∀ t ≥ 0,

then a probability measure µ on H is said to be an invariant measure.

3.5.2 The proof of tightness
We proceed the claim of tightness by first proving the following a priori estimate. The main dif-
ficulty is overcome by introducing a simplified auxiliary Ornstein Uhblenbeck process, which
enables us to use the classical arguments in the spirit of p.51-150 [1]. To prove existence of
invariant measures for (3.61), we write the problem in a slightly different form.
Let H , A : D(A) ⊂ H → H , V = D(A1/2) = D(Â1/2) and B : V × V → V ′, C be spaces and
operators introduced in the previous section. Suppose that there exists a constant cB > 0 such
that

⟨B(u, v), w⟩ = |b(u, v,w)| ≤ cB|u|1/2|u|1/2
V |v|1/2|v|1/2

V |w|V , ∀ u, v, z ∈ V , (3.176)
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⟨B(u, v), v⟩ ≤ cB|u|1/2|Au|1/2|v|V |z|,
for all u ∈ D(A), v ∈ V and z ∈ H.
In order to prove there exists at least one invariant measure, we use standard method in the
spirit of Chapter 15 in [36]. However, the analysis of Navier-Stokes equations with additive
noise in our case requires some non-trivial consideration, as pointed out in [34],. In particular,
a critical question arises when analyzing the estimate d+

dt |v(t)|2, the usual estimates for the
nonlinear term b(v(t), z(t), v(t)) yields a term |v(t)|2|z(t)|44, so we were not able to deduce any
bound in H for |v(t)|2 under classical lines. Nevertheless, in light of the method developed
in Crauel and Flandoli [34], via the usual change of variable and by writing the noise and the
Ornstein-Uhlenbeck process as finite sequence of 1D processes, we are able to prove there
exists at least one invariant measure to (3.177).
We remark that this fundamental ODE is different from the one used in the proof of existence
and uniqueness. Let f ∈ H and m > 1 be given. Consider

du(t) = [−Au(t) − B(u(t), u(t)) + Cu(t) + f ]dt +
m∑
l=1

σleldLl(t), (3.177)

where operators A, B, C are defined earlier in this chapter (see also section 1.2), f ∈ H ,
L1, L2 · · · Ll are i.i.d. R-valued symmetric β-stable process on a common probability space
(Ω,F,P), σ is a bounded sequence of real numbers and el is the complete orthonormal system
of eigenfunctions on H .

3.5.2.1 Auxiliary Ornstein-Uhlenback Process

Let (L̃(t), t ≥ 0) be a Lévy process that is an independent copy of L. Denote by L̄ a Lévy process
on the whole real line by

L̄(t)
⎧⎨
⎩

L(t), t ≥ 0
L̃(−t), t < 0, (3.178)

and by F̄t the filtration
F̄t = σ (L̄(s), s < t), t ∈ R.

Let α > 0 be given; For each l = 1, · · · ,m, let z0l be the stationary (ergodic) solution of the
one dimensional equation

dz0
l + (λl + α)z0

l dt = σldLl(t)
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so that
z0
l (t) =

∫ t

−∞
e−(λl+α)(t−s)σldLl(s)

Note that the integral above is well defined, since for any p ∈ (1, β) with β > 1 we have
E
∣∣z0

l (t)
∣∣p = Cp,β

∫ ∞

0
e−p(λl+α)(t−s)σpl ds

= Cp,βσpl
p (α + λl) .

(3.179)

More precisely, let
z0
l (t, s) =

∫ t

s
e−(λl+α)(t−r)σldLl(r) .

Then one can show directly evaluating integrals in the same way that
lims→−∞ zl(t, s) = zl(t)

exists. Putting z0(t) = ∑m
l=1 z0l (t)el one has

dz0 + (A + αI)z0 dt = GdL(t) , (3.180)
where Gel = σlel , or

z0(t) =
∫ t

−∞
e−(t−s)(A+αI)GdL(s) .

We have for any s, t such that −∞ < s < t < ∞

z(t) =
∫ t

−∞
e−(t−s)ÂGdL(s) = e−(t−s)Âz(s) +

∫ t

s
e−(t−r)ÂGdL(r) .

We need another lemma.

Lemma 3.5.6. We have
sup

−1≤t≤0
|Az(t)|2 < ∞ .

Proof. Note first that the process Z0 = Az0 is well defined and satisfies all the assumptions of
Lemma 3.2.1 with the process L replaced by another Lévy process AL. Therefore, we have

sup
−1≤t≤0

∣∣Z0(t)∣∣2 < ∞ .

Since D(A) = D
(

Â
)

all the rguments from the proof of Lemma 3.2.1 can be repeated yielding
sup

−1≤t≤0
|Az(t)|2 < ∞ .

!
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Now, using the lemma above and Lemma 3.2.1 applied with δ = 1
2 we find that the process z

is càdàg in V and
sup

−1≤t≤0

(|z(t)|2 + |z(t)|2V + |Az(t)|2) < ∞ P a.s. . (3.181)

Using Proposition (3.2.3), one can now choose α > 0 such that
4ηmE|z1(0)| ≤ λ1

4 , (3.182)
where λ1 is the first eigenvalue of A, since E|z1(0)|p → 0 as α → ∞.
From (3.182) and the Ergodic Theorem we obtain

limt0→−∞
1

−1 − t0
∫ −1

t0
4η

m∑
l=1

|zl(s)|ds = 4ηmE|z1(0)| < λ1
4 .

Put γ(t) = −λ1
2 + 4η∑m

l=1 |zl(t)|, we get

limt0→−∞
1

−1 − t0
∫ −1

t0
γ(s)ds < −λ1

4 . (3.183)
From this fact and by stationarity of zl we finally obtain

limt0→−∞ e
∫ −1
t0 γ(s)ds = 0 P − a.s. , (3.184)

sup
t0<−1

e
∫ −1
t0 γ(s)ds|z(t0)|2 < ∞, P − a.s. . (3.185)

∫ −1

−∞
e∫ −1

τ γ(s)ds(1 + |zl(τ)|2 + |zl(τ)|2V + |zl(τ)|2|zl(τ)|)dτ < ∞, P − a.s. . (3.186)
for all 1 ≤ j , l ≤ m. Indeed, note for instance that for t < 0,

zl(t)
t = zl(0)

t − 1
t (α + Al)

∫ 0

t
zl(s)ds + Ll(t)

t ,

whence limt→−∞ zl(t)
t = 0 P-a.s., which implies (3.184) and (3.185). Consider the abstract SNSE

du + [Au + B(u) + Cu]dt = fdt + GdL(t)
and the Ornstein-Uhlenback equation

dz + (Â + αI)zdt = GdL(t),
where L(t) = ∑m

l=1 elLl(t). We now use the change of variable v(t) = u(t) − z(t). Then, by
subtracting the Ornstein-Uhlenback equation from the abstract SNSE, we find that v satisfies
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the equation
d+v
dt = −νAv(t) − Cv(t) − B(u, u) + f + αz. (3.187)

Recall the Poincare inequalities
|u|2V ≥ λ1|u|2, ∀ u ∈ V , (3.188)

|Au|2 ≥ λ1|u|2, ∀ u ∈ D(A). (3.189)
Let us note that there exists η > 0 such that

|⟨B(u, el), u⟩| ≤ η|u|2, u ∈ V , l = 1, · · · ,m. (3.190)
Then the following holds.

Proposition 3.5.7. Let α > 0, v is a mild solution of (3.187), there exist cosntants c, c′ > 0
depending only on λ1 such that

1
2
d+

dt |v|2 + 1
2 |v|2V ≤

(
−λ1

4 + 2η
m∑
l=1

|zl|
)

|v|2 + c|f |2 + cα|z|2 + 2η|z|2
m∑
l=1

|zl|. (3.191)

Proof. Let α > 0 be given. Denote for simplicity by z(t) the stationary Orstein Uhbleck
process, corresponding to α, introduced in earlier. Using the classical change of variable
v(t) = u(t) − z(t) , the well known identity 1

2∂t|v(t)|2 = (v(t), v(t)), and the antisymmetric term
(Cv, v) = 0 we have

1
2
d+

dt |v|2 = −ν(Av, v) − ⟨B(u, z), u⟩ + (αz, v) + ⟨f , v⟩ (3.192)
≤ −ν|v|2V − ⟨B(u, z), u⟩ + α|z||v| + |f ||v|. (3.193)

By the definition of z and assumptions (3.190),

⟨B(u, z), u⟩ =
m∑
l=1

⟨B(u, el), u⟩zl ≤ η|u|2
m∑
l=1

|zl|

≤ 2η|v|2
m∑
l=1

|zl| + 2η|z|2
m∑
l=1

|zl|,

and the inequalities
⟨αz, v⟩ = cα|z|2 + c′|v|2,

⟨f , v⟩ ≤ c|f |2 + c′|v|2.
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For simplicity we take ν = 1. Then via Young inequality, one can show that there exists c, c′ > 0
depending only on λ1 such that
1
2
d+

dt |v|2 + 1
2 |v|2V ≤ −1

2 |v|2 + 2η|v|2
m∑
l=1

|zl| + 2η|z|2
m∑
l=1

|zl| + c|f |2 + 2c′|v|2 + cα|z|2 + 2c|z|2V + c′|v|2V .

So
1
2
d+

dt |v|2 + 1
2 |v|2V ≤ (−λ1

4 + 2η
m∑
l=1

|zl| + 2c′)|v|2 + c|f |2 + cα|z|2 + 2η|z|2
m∑
l=1

|zl|.

Hence one can find a constant c, c′ > 0 depending only on λ1 for which the claim follows.
Moreover, Let γ(t), and p(t) are defined as :

p(t) = c|f |2 + cα|z|2 + η|z|2
m∑
l=1

|zl(t)|,

γ(t) = −λ1
2 + 4η

m∑
l=1

|zl(s)|,

we have
1
2
d+

dt |v|2 + 1
2 |v|2V ≤ 1

2γ(t)|v|2 + p(t). (3.194)
!

Temporarily disregard the |v(t)|V term, we have
d+

dt |v(t)|2 ≤ γ(t)|v(t)|2 + 2p(t)
which implies

|v(t)|2 ≤ |v(τ)|2e∫ tτ γ(s)ds +
∫ t

t0
e∫ ts γ(ξ)dξ2p(s)ds. (3.195)

Now drop out the first term in (3.194), integrate over [τ, t] we have
∫ t

τ
|v(s)|2Vds ≤ ( sup

τ≤s≤t
|v(s)|2)

∫ t

τ
γ(ξ)dξ +

∫ t

τ
2p(s)ds. (3.196)

Let us recall, that we proved the existence an uniqueness of solutions to the stochastic Naver-
Stokes equation under the assumption that

∞∑
l=1

|σl|βλβ/2
l < ∞ , (3.197)

and then the process z(·) has a càdlàg version in V = D(A1/2).
We will show that, under the above assumption, there exist at least one invariant measure for
SNSE. Let f ∈ H , be given. For an arbitrary real number s, u(t, s), t ≥ s, is the unique solution
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to the SNSE ⎧⎨
⎩
du(t) + Au(t)dt + B(u(t), u(t))dt + Cu(t)dt = fdt + dL(t),
u(s) = 0

Remark. The space D(Aδ) is compactly embedded into the space H.

Consequently, if one prove that the process u(t, 0), t ≥ 1 is bounded in probability as a process
with values on D(Aδ), one gets immediately the law L(u(t, 0)), t ≥ 1 are tight on H. This suffices
the claim of existence of an invariant measure. More precisely, one proves in two steps.
Step 1 Assuming that (3.197) holds we will prove an a priori bound in H . For any α ≥ 0,
denote by z the stationary solution of

dzα + (Â + αI)zαdt = dL̄(t),
where

zα(t) = z(t) + e−(Â+α)(t−s)(zα − z(s)) − α
∫ t

s
e−(Â+α)(t−s)z(σ )dσ. (3.198)

Let
vα(t, s) = u(t, s) − zα(t), t ≥ s.

Then vα(t) = vα(t, s), t ≥ s is the mild solution to
∂tvα(t) + νAv(t)dt + C(vα(t) + zα(t)) = −B(vα(t) + zα(t)) + f + αzα(t), t ≥ s,

v(s) = −zα(s)
Following step 1 one has the following proposition

Proposition 3.5.8. There exists α > 0 and a random variable ξ such that P-a.s.
|vα(t, s)| ≤ ξ ∀ t ∈ [−1, 0] and all s ≤ −1, (3.199)

∫ 0

−1
|vα(t, s)|2Vds < ξ ∀ t ∈ [−1, 0] and all s ≤ −1. (3.200)

Proof. In view of inequality 3.195, one obtains

|vα(t, s)|2 ≤ |v(s)|2e∫ ts − λ12 +4η∑m
l=1 |zl(ξ)|dξ +

∫ t

s
e∫ tr γ(ξ)dξ2p(r)dr. (3.201)

Based on the earlier discussion, the first term is finite; The second term is also finite under
the assumption (3.181).
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We now use the ergodic properties of z. Since zα(t), −∞ < t < ∞, is an ergodic process which
is supported by D(Aδ) ⊂ L4(S2). Then by the Marcinkiewicz strong law of large number, we
have P a.s. that and by Prop 8.4 [23] that

lims→−∞
1

−1 − s
∫ −1

s
4η

m∑
l=1

|zl(σ )|dσ = 4ηmE|z1(0)| < λ1
4 .

The existence and uniqueness of invariant measure for the OU equation driven by Lévy process
is well-known [29].
Let µα be the unique invariant measure of Lévy type. It is easy to see that

limα→∞

∫
V

4η
m∑
l=1

|zl(s)|µα(dz) = 0.

Then for sufficiently large random s0 > 0 and s < −s0

e∫ ts − λ12 +4η∑m
l=1 |zl(ξ)|dξ ≤ e− λ14 (t−s). (3.202)

To complete the proof this proposition we need the following Lemma.

Lemma 3.5.9. Assume that X is a stationary process taking values in a Banach space B.
Moreover, assume that for a certain p > 0 we have

E sup
t∈[−1,0]

|X(t)|pB < ∞ .

Then for every κ > 0 such that κp > 1 there exists a random variable ξ such that P a.s.
|X(t)|B ≤ ξ + 2κ|t|κ,

for all t ≤ 0.
Proof. Let ηn = sup−n≤s≤−n+1 |X(s)|B , n = 0, 1, . . . Then by stationarity

Eηpn = Eηp < ∞.
Therefore,

P(ηn ≥ nκ) ≤ Eηp1
nκp . (3.203)

If κp > 1, then ∑∞
n=1 P(ηn ≥ nκ) < ∞, and by the Borel Cantelli lemma, P-a.s., for any

sufficiently large n,
ηn ≤ nκ.

That is, for every ω, there exists N(ω) such that
ηn(ω) ≤ nκ, for n > N(ω).
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Therefore, for t ∈ [−n,−n + 1] we have
|X(t, ω)|B ≤ ηn(ω) ≤ ηn(ω)In≤n(ω) + nκIn>N(ω)

≤ ηn(ω)In≤N(ω) + 2κ|t|κ.
Since P(N < ∞) = 1 the random variable

ξ(ω) = max
n≤N(ω)

ηn(ω)
is finite P-a.s. and the Lemma follows. !

With the aid of this lemma, combine with equations (3.199), (3.201) and (3.202). We deduce the
claim in Proposition 3.5.8. Moreover, via an apriori estimate about ∫ T

0 |v(t)|2Vdt , that is (3.196)
the inequality (3.200) follows. !

Step 2 Measure support. We now generalise Proposition 3.5.7 by proving regularizing prop-
erty of equation (3.187) via deducing a priori estimate in D(Aδ) for some δ > 0. This allows us
to establish support of invariant measure.

Proposition 3.5.10. For any δ ∈ [0, 1
2 ], there exists C = C(δ) such that for any mild solution

v(·) of (3.187), one has

|Aδv(t)|2 ≤ eC ∫ t0 |v(s)|2|A 12 v(s)|2ds|Aδv(0)|2 + C
∫ t

0
eC ∫ tσ |v(s)|2|A 12 v(s)|2ds(|Aδ+ 1

2 f |2 + |z(σ )|2 + |A 1+2δ
4 z(σ )|4)dσ.

(3.204)
Proof. Multiply (3.187) by A2δv and integrating over S2, one finds that

1
2∂t|A

δv(t)|2 + |A 1
2 +δv(t)|2 + (Cv(t),A2δv(t))

= − b(v(t) + zα(t), v(t) + zα(t),A2δv(t)) + α(Aδzα(t),Aδv(t)) + ⟨Aδf ,Aδv(t)). (3.205)
From Lemma 3.1.4 it is clear that

(Cv,A2δv) = 0.
To complete the proof we need to estimate the terms b(v + z, v + z,A2δv), α⟨A2δv, z⟩, ⟨A2δv, f⟩
Using Young inequality with ab = √ ν

10a
√

10
ν b, p = 2, we have

α|⟨A2δv, z⟩| ≤ ν
6 |Aδ+ 1

2v|2 + 3α2

2ν |z|2

|⟨A2δv, f⟩| ≤ ν
6 |Aδ+ 1

2v|2 + 3
2ν |f |2
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Finally, following the method of deriving (15.4.12) as in [36], one can show that, for any ν > 0,
there exists a K(ν) such that

|⟨A2δv,B(v + z, v + z)⟩| = |b(v + z, v + z,A2δv)| (3.206)
≤ ν

6 |Aδ+ 1
2v|2 + K(ν)(|v|2|A1/2v|2 + |A 1+2δ

4 z|4). (3.207)
Combing the above estimates, we have

1
2∂t|A

δv(t)|2 + (1 − 3ν6)|A 1
2 +δv(t)|2

≤ K(ν)|v(t)|2|A 1
2v(t)|2 + K(ν)|A 1+2δ

4 z(t)|4 + 3α2

2ν |z(t)|2 + 3
2ν |f |2.

Therefore, invoking Gronwall, it follows that
|Aδv(t)|2 ≤ eK(ν) ∫ t0 |v(s)|2|A 12 v(s)|2ds|Aδv(0)|2 (3.208)

+
∫ t

0
eK(ν) ∫ tσ |v(s)|2|A 12 v(s)|2ds

(3α2

2ν |z|2 + K(ν)|A 1+2δ
4 |4 + 3

2ν |f |2
)
dσ. (3.209)

!

To complete the proof of invariant measure. It follows from Proposition 3.5.10 that for any
t ≤ −1 ≤ r ≤ 0,

|Aδvα(0, t)|2

= eK(ν) ∫ 0
r |vα(s,t)|2|A 12 vα(s,t)|2ds|Aδvα(r, t)|2

+
∫ 0

r
eK(ν) ∫ 0

σ |vα(s,t)|2|A 12 vα(s,t)|2ds(3α
2

ν |z|2 + K(ν)|A 1+2δ
4 |4 + 3

2ν |f |2)dσ

≤ eK(ν)[sup−1≤s≤0 |vα(s,t)|2] ∫ 0
−1 |A 12 vα(s,t)|2ds ×

[
|Aδvα(r, t)|2 + 3α2

2ν |z|2 + K(ν)|A 1+2δ
4 |4 + 3

ν |f |2dσ
]
.

Consequently, integrating the above over the interval [−1, 0], one gets for t ≤ −1 that
|Aδvα(0, t)|2

≤ eK(ν)[sup−1≤s≤0 |vα(s,t)|2] ∫ 0
−1 |A 12 vα(s,t)|2ds

×
[
|A 1

2vα(r, t)| + 3α2

2ν |z|2 + K(ν)|A 1+2δ
4 |4 + 3

2ν |f |2dσ
]
.

By Proposition 3.5.8 there exists a random variable η such that P a.s.
|Aδvα(0, t)| ≤ ξ, ∀ t ≤ −1. (3.210)

Moreover,
|Aδu(0, t)| ≤ |Aδvα(0, t)| + |Aδzα(0)|.
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Since zα(0) takes value in D(Aδ) there exists another random variable ζ such that P a.s.
|Aδu(0, t)| ≤ ζ ∀ t ≤ −1. (3.211)

So u(0, t) is bounded in probability in the space D(Aδ) for some δ > 0 satisfies∑l≥1 |σl|βλβδl < ∞:
∀ ε > 0 ∃ R > 0 ∀ t ≥ 0 P(|u(0, t, u0)| ≥ R) < ε.

Now Let u0 be fixed and let νt,u0 be the law of u(t, u0). Set

µT = 1
T
∫ T

0
νt,u0dt.

Let BR = {x ∈ D(Aδ); |Aδx| ≤ R}, equation (3.211) implies for p ∈ (1, β)

µT (Bc
R) ≤ 1

TRp

∫ T

0
E|Aδu(0, t, u0)|p dt

≤ 1
TRpTEζp = Eζp

Rp .
We have that, for any ε > 0, µT (BR) = 1 − ε for sufficient large R. Hence µT is tight and its
limit is an invariant probability measure of the solution u of equation (3.61), by Corollary 3.
Moreover, the support of the invariant measure is in D(A1/2).
Combine with the markov feller properties proved for u earlier, the solution u to equation
(3.61) admits at least one invariant measure and is supported in D(A1/2). Hence, Theorem 3.2.17
is proved.

3.6 Appendix
3.6.1 Miscellaneous facts from Functional Analysis
In this section we review some basic facts from Functional Analysis. For the sake of brevity
proofs are omitted. Readers are referred to the appendix in [92]. These well known facts also
appear in standard texts such as [13, 77, 116].

3.6.1.1 Weak and weak* convergence and compactness
Suppose U is a Banach space (over R) then its dual space U∗ := L(U,C) consists of all bounded
linear functionals from U to R. The dual space is a Banach space, where the norm of f ∈ U∗

is
∥f∥ = sup

x∈U :∥x∥=1
⟨f , x⟩U×U∗ = sup

x∈U :∥x∥=1
|f (x)|.

The subscript U × U∗ from the dual pairing is often omited.
141



Let us now recall some basic fact concerning dual spaces, weak and weak* convergence. For
proofs see for instance Yosida [116].
A fundamental result is the Hahn-Banach Theorem, which allows us to extend linear func-
tionals defined on subspaces to the whole space.

Theorem 3.6.1 (Hahn-Banach Theorem). Let U is a Banach space and E be a linear subspace
of U . If f ∈ E∗ then there exists an F ∈ U∗ that satisfies F (u) = f (u) for every u ∈ E and
|F |U∗ ≤ |f |E∗ .

Corollary 4. Let U be a Banach space and take u ∈ U with u ̸= 0. Then there exists f ∈ U∗

such that |f |U∗ = 1 and ⟨f , u⟩ = |u|U .
A sequence (xn) in U converges weakly to u ∈ U , which we write as un ⇀ u in U , if

⟨f , un⟩ → ⟨f , u⟩ for every f ∈ U∗.
The following is a list of properties of weak limits.

Proposition 3.6.2. Let U be a Banach space and (un), u ∈ U.
• Weak limits are unique;
• If un → u then un ⇀ u;
• weak convergence sequences are bounded; and
• if un ⇀ u then

|u|U ≤ lim infn→∞ |un|U ,
so in particular if |un|E ≤ M for every n it follows that |u|E ≤ M.

Lemma 3.6.3. If H is a Hilbert space and (un) ∈ H then un → u if and only if un ⇀ u and
∥un∥ → ∥u∥
A sequence (fn) in U∗ converges weakly* to f ∈ U∗, which we write as un ∗⇀ u in U∗, if

⟨fn, u⟩ → ⟨f , u⟩ for each u ∈ U.
One may observe that this is in some sense the natural definition of convergence in U∗.
Moreover, weak* convergence satisfies the following properties.

Proposition 3.6.4. Let U be a Banach space and (fn), f ∈ U∗.
(i) Weak* limits are unique;
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(ii) weak* convergent sequences are bounded; and
(iii) if fn ∗⇀ f then

|f |U∗ ≤ lim inf |fn|U∗,
so in particular if |fn|∗U for every n it follows that |f |U∗ ≤ M.

The following two results provide weak and weak* compactness and are central to the argu-
ments that construct solutions as limits of approximations.

Theorem 3.6.5 (Banach-Alaoglu Theorem). If U is a separable Banach space then any
bounded sequence in U∗ has a weakly* convergent subsequence.

Corollary 5 (Weak compactness). Let U be a reflexive Banach space, then any bounded
sequence un has a convergent subsequence, that is, there exists unk ⊂ un and u ∈ U such
that unk ⇀ u

3.6.1.2 Some convergence theorems
Let µ be a measure on Rd .

Theorem 3.6.6 (Dominated convergence theorem). Let (fn) be a sequence of measurable
function on Rd such that

• fn → f almost everywhere (equivalently, limn→∞ fn(x) = f (x) pointwise.)
• there exists nonnegative integrable function g , i.e. g : S → [0,∞] such that |fn| ≤ g

a.e. ∀n ∈ Rd. Then
limn→∞

∫
Rd

|fn − f |dµ = 0,
in particular ∫

fn →
∫
f .

Lemma 3.6.7 (Fatou). Let (fn) be a sequence of nonnegative measurable function on Rd (i.e.
fn : S → [0,∞] is an arbitrary measurable function) such that

• fn → f a.e.
• ∫

lim infn→∞ fn ≤ lim infn→∞

∫
Rd
fn.
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Theorem 3.6.8 (D.C.T. Continuity of integral). Let µ be a measure on X and I ⊆ Rd . Suppose
that F : X × I → Rd is such that

• For each t ∈ I , the function F (·, t) is µ-integrable;
• For each t ∈ I , F (x, t) is coninuous at t0 for almost all x ∈ Rd

• there exists g ∈ L1(X;Rd) such that |F (t, x)| ≤ G(x) for almost all x ∈ X and all t ∈ I
Define f (t) = ∫X F (t, x)dµ(x). Then f is continuous at t0 ∈ I.

Theorem 3.6.9 (Differentiation under the integral). Let µ be a measure on X and I ⊆ Rd .
Suppose that F : X × I → Rd is such that

• For each t ∈ I , the function F (·, t) is µ-integrable;
• For each t ∈ I , DtF (x, t) exists for almost all x ∈ X;
• there exists g ∈ L1(µ) such that supt∈I |DtF (x, t)| ≤ g(x) for almost all x ∈ X.

Define f (t) = ∫Rd F (t, x)dµ(x). Then f is differentiable and
f ′(t) =

∫
Rd

DF (t, x)dµ(y),
where

DtF (t, x) = ∂F
∂t = limh→0

F (t + h, x) − F (t, x)
h

DxF (t, x) = ∂F
∂x = limh→0

F (t, x + h) − F (t, x)
h

3.6.2 Limit theorems

The law of large numbers plays a cenral role in probability and statistics. Roughly speaking, it
says, if one repeats an experiment independenly many many times and average the result, then
one obtain a value close to the expected value. Here we review three main limit theorems.
Namely, WLLN, SLLN and the Marcinkiewicz Strong Law of Large Numbers.

Theorem 3.6.10 (Weak Law of Large Numbers (WLLN)). Let ξ1, ξ2, · · · , ξn be i.i.d. r.v. with
finite first moment: Eξ = µ < ∞. Then,

limn→∞

(
|ξ̄n − µ| ≥ ε

)
= 0.

Remark: ξ̄n is said to converges in probability to Eξ , denotes at ξn P−2 µ.
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Theorem 3.6.11 (Kolmogorov Strong Law of Large Numbers (SLLN)). Let ξ1, ξ2, · · · , ξn be
i.i.d. r.v. with finite first moment: Eξ = µ < ∞. Then,

P(ω : limn→∞ ξ̄n(ω) = µ) = 1.
Remark: ξ̄n is said to converges to µ almost surely , denotes at

ξn a.s.−2 µ ⇔ sup
k≥n

|ξ̄k − µ| P−2 0 KB ξ̄n P−2 ξ.
Roughly speaking, take Sn = ξ1 + · · · + ξn, then the WLLN states that, for every sufficiently
large fixed n the average Sn/n is likely to be close to µ. The SLLN on the other hand ask the
question that, in what sense can we say

limn→∞
Sn(ω)
n = µ.

Now we introduce a version of SLLN applicable to the β-stable case.

Theorem 3.6.12 (Marcinkiewicz SLLN). Let ξ1, ξ2, · · · , ξn be i.i.d. r.v.. If 0 < p < 2 then the
relation E|ξ1|p < ∞ is equivalent to the relation

Sn − nµ
n1/p → 0 a.s. .

Here, µ = 0 if 0 < p < 1 and µ = Eξ1 if 1 ≤ p < 2.
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CHAPTER 4

Random dynamics, Random attractors and Invariant
measures

4.1 Introduction and Motivation
The study of asymptotic behaviour of dynamical systems has been one of the most fundamental
problems in mathematical physics. One of the central notions is an attractor, which conveys
crucial geometric information about the asymptotic regime of a dynamical system as t → ∞. It
is well known that the 2D Navier-Stokes equations is dissipative and so have a global attractor,
see for instance [91, 103]. More precisely, there exists compact subset K of the original phase
space where all asymptotic dynamics fall in. Much of the theory of infinite dynamical systems
devote to study the properties of this set K, which is called the global attractor (see for instance
[91, 103]). For instance, one can show that, if there exists a unique mild solution on the space
K then we can define a group of solution operator S(t) for the equation sensibly for all t ∈ R,
this defines a standard dynamical system,

(K, {S(t)t∈R})
A random (pullback) attractor is the pullback attractor where time-dependent forcing become
random (In this thesis, this is given by the contribution from F (t) and the noise term ). Readers
are referred to [28] for a comparison of the three frameworks for the study of attractors,
namely, attractors, pullback attractors and random attractors. Just like in the deterministic case,
the theory of random attractor plays an important role in the study of the asymptotic behaviour
of dissipative random dynamical system. Crauel and Flandoli [34], Crauel, Debussche and
Flandoli [33] developed a theory for the existence of random attractors for stochastic systems
that closely comparable to the deterministic theory. Roughly speaking, a random attractor is
a random invariant compact set which attracts every trajectory as time goes to infinity. The
strategy to prove the existence of random attractor is analogous to the method of proving
global attractor in deterministic case, which involves two main methods. The first method
requires one to find a bounded absorbing set and to prove asymptotic compactness of S(t); The
second method is to find compact absorbing set, and it turns out to be the method we employ
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in proving existence of random attractor in our case. The existence theorems and continuous
dependence of initial datum in the earlier chapter allows us to define a flow φ : R×Ω×H → H
in the following sense:

φt(ω)v0 = v(t, ω; v0), t ∈ T, ω ∈ Ω, v0 ∈ H.
Our goal of this chapter is to investigate the dynamical behavior of the SNSE on 2D rotating
spheres with additive stable Lévy noise

du(t) = [−Au(t) − B(u(t), u(t)) + Cu(t) + f ]dt +
m∑
l=1

σldLl(t)el, u(0) = u0, (4.1)

where A,B,C are respectively the Stokes operator, the bilinear operator and the Coriolis op-
erator as defined in Chapter 4, and f ∈ H , e1, · · · , em ∈ H are the eigenfunctions of the stokes
operator A, {σl} is a sequence of real numbers, Ll(t), (1 ≤ l ≤ m) are mutually independent
two-sided β-stable Lévy processes u = u(t, x, ω) is now a random velocity of the fluid.
Our goal in this chapter is in threefold.

• Prove (4.1) generates a RDS φ;
• Establish the existence of random attractor for (4.1);
• Establish the existence of a Feller Markov Invariant Measure supported by the random

attractor.

To this end, we study the stationary ergodic solution of an Ornstein-Uhblenceck, make trans-
formation to obtain some estimates of the solution respectively in space H and V , then using
the compact embedding of Sobolev space, we obtain the existence of compact random set
which absorbs any bounded nonrandom subset of space H .
In section 5.2, we introduce some key terminology such as RDS, random attractors, Markov-
invariant measures to study random dynamics induced by our SNSE under jump noise. In
section 5.3, we prove φ indeed defines a random dynamical system along with a driving flow
φ. This claim was accomplished by first identifying a suitable canonical sample probability
space for (4.1) which ensures the linear stochastic Stokes equation remains stationary. (see
5.3.1 and 5.3.2) Then via an a priori estimate for a strong solution (bounded in V , compact in
H) from the earlier chapter, we identified a compact absorbing set and consequently deduce
the existence of a random attractor based on the assumption of a finite-dimensional noise.
Finally, using the property of random attractor, we deduce the existence of random invariant
measure which is supported by the random attractor of the spherical SNSE.
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4.2 Attractors in the theory of random dynamical system
In this section, we review the necessary mathematics foundation for the studies of random
attractors. The presentation here follows closely with [7, 18, 34] with some slight modification
to Jump case based on the various papers on RDS under Lévy noise [2, 57]. The notion of
random dynamical system is simply a generalisation of a deterministic dynamical system. In
brief, an RDS has two features, one is the measurable dynamical system φ, which is used to
model the random perturbations, and the other is the cocycle mapping θ defined over the
dynamical system (see Arnold [7] for more detail).

4.2.1 Basic definitions
In this subsection, we recall the definition of random dynamical system (RDS) and cocylcle

Definition 4.2.1. A triple T = (Ω,F, θ ) is said to be a measurable dynamical system (DS) if
(Ω,F) is a measurable space and θ : R × Ω ∋ (t, ω) 12 θtω ∈ Ω is a B(R) ⊗ F-measurable map
such that for all t, s ∈ R, θt+s = θt ◦ θs. A quadruple T(Ω,F,P, θ ) is called a metric dynamical
system (RDS) iff. (Ω,F,P) is a probability space and T′ := (Ω,F, θ ) is a measurable DS such
that for each t ∈ R, the map θt : Ω → Ω is P-preserving.

Definition 4.2.2. Given a metric DS T and a Polish space (X, d), a map φ : R × Ω × X ∋
(t, ω, x) 12 φ(t, ω)x ∈ X is called a measurable random dynamical system (on X over θ ), iff

• φ(t) is strongly measurable ∀ t ∈ T : φ(t, ·)x is F/B(X)-measurable ∀t ∈ T and x ∈ X;
• φ(t, ω)· : X → X is continuous for all (t, ω) ∈ R × Ω;
• The trajectories φ(·, ω)x : R → X are càdlàg ∀ (ω, x) ∈ Ω × R;
• φ is θ -cocycle:

φ(t + s, ω) = φ(t, θsω) ◦ φ(s, ω) ∀ s, t ∈ R, φ(0, ω) = id, ∀ ω ∈ Ω. (4.2)
It follows from the cocycle property that φ(t, ω)· is automatically invertible. (∀t ∈ T and ∀P a.e.
ω.) In fact, φ(t, ω)−1 = φ(−t, θtω) for t ∈ T . Instead of assuming (4.2) for all ω ∈ Ω it suffices
to assume (4.2) for all ω from a measurable (θt)t∈T -invariant subset of Ω of full measure.

4.2.2 Stochastic Calculus for two-sided time
While we will assume our metric dynamical system has two sided time T = R, in this subsection
we briefly discuss the extension of stochastic calculus to two sided time. The material follows
closely with section 2.3.2 [7].
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Let (Ω,F,P) denotes from now a complete probability space.

Definition 4.2.3 (Two-Parameter Filtration, p.71 [7]). Assume Fts , s, t ∈ R, s ≤ t , is a two
parameter family of sub σ -algebras of F with the following properties

• Fts ⊂ Fvu for u ≤ s ≤ t ≤ v
• Ft+s := ∩u>tFus = Fts , Fts− := ∩u<sFtu = Fts for s ≤ t ,
• Fts contains all P-null sets of F for every s ≤ t .

Then Fts , s ≤ t is called a (two-parameter) filtration on (on (Ω,F,P)). We define
Ft

−∞ := ∨s≤tFt
s, F∞

s := ∨t≥sFt
s.

Definition 4.2.4 (Filtered DS, p.72 [7]). Let (Ω,F0,P, {θt}t∈R) be a metric DS, let F be the P-
completion of F0, and let Fts , s ≤ t , be a filtration in (Ω,F,P). We call (Ω,F,P, {θ}t∈R, {Fts}s≤t)
is filtered DS, if for all s, t, u ∈ R, s ≤ t , we have

θ−1
u Ft

s = Ft+u
s+u.

4.2.3 Attraction and absorption

For two random sets A,B ⊂ X, we put
d(A,B) = sup

x∈A
d(x,B) and ρ(A,B) = max{d(A,B), d(B,A)}.

In fact, ρ restricted to the family C of all nonempty closed subsets on X is a metric (see [26]),
and it is the so-called Hausdorff metric. From now on, let X be the Borel σ -field on C generated
by open sets w.r.t. the metric ρ [19, 26, 32].

Definition 4.2.5. Let us assume that (Ω,F) is a measurable space and let (X, d) be a Polish
space. A set-valued map C : Ω → C(X) is said to be measurable iff. C is (F,X)-measurable.
Such a map is often called a closed and bounded random set. A closed and bounded random
set C will be called a compact random set on X if for each ω ∈ Ω, C(ω) is a compact subset
of X.

Example 2. A closed set valued map K : Ω → 2X is a random closed set.
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Remark. Let f : X 12 R, be a continuous function on the Polish space X and R : Ω 12 R an
F-measurable random variable. If the set Cf ,R(ω) := {x : f (x) ≤ R(ω)} is nonempty for each
ω ∈ Ω, then Cf ,R is a closed and bounded random set.

Definition 4.2.6. Let φ : R × Ω × X ∋ (t, ω, x) 12 φ(t, ω)x ∈ X be measurable RDS on a Polish
space (X, d) over a metric DS T. A closed random set B is said to be φ forward invariant iff.
for all ω ∈ Ω,

φ(t, ω)B(ω) ⊆ B(θtω) ∀ t > 0.
A closed random set B is said to be strictly φ invariant iff. ∀ω ∈ Ω,

φ(t, ω)B(ω) = B(θtω) ∀ t > 0.

Remark. By substituting θ−tω for ω, we have the equivalent version of the above definition:
φ(t, φ−tω)B(θ−tω) ⊆ B(ω), ∀ t > 0,

φ(t, φ−tω)B(θ−tω) = B(ω), ∀ t > 0.

Definition 4.2.7. For a given closed random set B, the Ω-limit set of B is defined to be the set
Ω(B, ω) = ΩB(ω) = ⋂

T≥0

⋃
t≥T

φ(t, φ−tω)B(θ−tω)

Remark. (i) A priori Ω(B, ω) can be an empty set.
(ii) One has the following equivalent version of Definition 4.2.7:

ΩB(ω) = {y : ∃tn → ∞, {xn} ⊂ B(θ−tnω), limn→∞φ(tn, θ−tnω)xn = y}.
(iii) Since ⋃t≥T φ(t, θ−tω) is closed, ΩB(ω) is closed as well.

Given a probability space, a random attractor is a compact random set, invariant for the
associated RDS and attracting every bounded random set in its basis of attraction. More
precisely,

Definition 4.2.8. A random set A : Ω → C(X) is a random attractor iff

• A is a compact random set;
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• A is φ-invariant, i.e. P-a.s.
φ(t, ω)A(ω) = A(θtω), (4.3)

• A is attracting, in the sense that, for all B ∈ X it holds
limt→∞ ρ(φ(t, θ−tω)B(φ−tω),A(ω)) = 0.

The random attractor A in the present chapter shall not be confused with the Stokes operator
A.
Let us now state a result on the existence of a random attractor, which is a generalisation of
the Gaussian noise case in the pioneering work in [34] to the Lévy noise case.

Theorem 4.2.9. Let φ be a continuous in space, but càdlàg in time RDS on X. Assume the
existence of a compact random set K absorbing every deterministic bounded set B ⊆ H .
Then there exists a random attractor A given by

A(ω) = ⋃
B⊆X,B bounded

ΩB(ω), ω ∈ Ω.

Proof. The proof is analogous to the proof of Theorem 3.11 in Flandoli and Crauel [34]. !

4.2.4 Invariant measures on random sets
In the final section of this thesis, we prove the existence of invariant measure for the RDS
φ (Put in another way, the existence of random invariant measure). Recall the standard facts
from Chapter 2, in particular, the definition of skew product; we are ready to discuss what one
means by random invariant measure.

Definition 4.2.10. Let φ be a given RDS over a metric DS T. A probability measure µ on
(Ω × X,F × B) is said to be an invariant measure for φ iff.

• Θt preserves µ : Θt(µ) = µ for all t > 0;
• The first marginal of µ is P, i.e. πΩ(µ) = P where

πΩ : Ω × X ∋ (ω, x) 12 ω ∈ Ω.
The following corollary gives the existence of invariant measure for a RDS φ. The proof
follows from the Markov-Katutani fixed point theorem (see p.87 [32] for more detail.).
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Corollary 6 (p.374,[34]). Let φ be an RDS, and suppose ω 12 A(ω) is a compact measurable
forward invariant set for φ. Then there exist invariant measure for φ which are supported
by A.
Alternatively, one can construct the random invariant measure more explicitly via an Krylov-
Bogoliubov type argument; we refer readers to p.87 [32].

4.2.4.1 Markov Invariant Measures

Based on the conditions in Theorem 4.2.9, it is clear the attractor is measurable with respect
to the past F−, since ΩB is measurable for any nonrandom B.
Define two σ -algebra corresponding to the future and the past, respectively by

F+ = σ{ω 12 φ(τ, θtω) : τ, t ≥ 0},
and

F− = σ{ω 12 φ(τ, θ−tω) : τ, 0 ≤ τ ≤ t}.
Then θ−1t F+ ⊂ F+ for all t ≥ 0 and θ−1t F− ⊂ F− for all t ≤ 0.

Proposition 4.2.11. Suppose ω 12 A(ω) is an φ-invariant compact set which is measurable
with respect to the past F− for an RDS φ. Then there exist invariant measures µ supported
by A such that also ω 12 µω is measurable with respect to F−.

Corollary 7 (p.374[34]). Under the conditions of the Proposition suppose in addition that
φ is an RDS whose one-point motions form a Markov family, and such that F+ and F−

are independent. Then there exists an invariant measure ρ for the associated Markov
semigroup. Furthermore, the limit

µω = limt→∞φ(t, θ−tω)ρ
exists P a.s., ρ = ∫ µωdP(ω) = E(µ·), and µ is a Markov measure.

4.2.4.2 Feller Markov Invariant measures

By Corollary 6 for an given RDS φ on a Polish space X, one can find an invariant probability
measure if an invariant compact random set K(ω), ω ∈ Ω can be identified. Hence Corollary
6 is generalised as the following.
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Corollary 8. A continuous in space, càdlàg in time RDS which has an invariant compact
random set K(ω), ω ∈ Ω has at least one invariant probability measure µ in the sense of
definition 4.2.10.
One of the desirable property of solutions of stochastic PDE is Feller property (see definition
in Chapter 4). Let us now define a Feller invariant measure for a Markov RDS φ. If f : X → R
is bounded Borel measurable function, then put

(Ptf )(x) = Ef (φ(t, x)), t ≥ 0, x ∈ X. (4.4)
It is clear that Ptf is also a bounded and borel measurable function. Moreover, one has the
following result.

Proposition 4.2.12. Assume that that RDS φ is a.s. contiuous in space for every t ≥ 0. Then
the family (Pt , t ≥ 0) is Feller, i.e. Ptf ∈ Cb(X) if f ∈ Cb(X). Moreover, if the RDS φ is càdlàg
in time, then for any f ∈ Cb(X), (Ptf )(x) → f (x) as t ↓ 0.

Proof. For the first part, let us fix t > 0. If xn → x in X, then it follows from the space continuity
of φ(t, ·) that (Ptf )(xn) → (Ptf )(x) using the Lebesgue dominated convergence theorem.
For the second part, note that for a given x ∈ X from the càdlàg property of φ(·, x, ω) : [0,∞) →
X for a.e. ω it follows that one has (Ptf )(x) → f (x) as t → 0 if x ∈ X. !

A RDS φ is called Markov iff the family (Pt , t ≥ 0) is a semigroup on Cb(X), that is, Pt+s = Pt◦Ps
for all t, s ≥ 0.

Definition 4.2.13. A Borel probability measure µ in H is said to be invariant w.r.t. Pt if
P∗
t µ :=

∫
X

Pt(x,Γ)µ(dx) = µ(Γ), ∀Γ ∈ B(X),
where (P∗t )(Γ) = ∫H Pt(x,Γ)µ(dx) for Γ ∈ B(H) and Pt(x, ·) is the transition probability, Pt(x,Γ) =
Pt(1Γ)(x)

Finally, a Feller invariant probability measure for a Markov RDS φ on H is, by definition, an
invariant probability measure for the semigroup (Pt , t ≥ 0) define by (4.4).
In view of Corollary 7, if a Markov RDS φ on a Polish space H has an invariant compact
random set K(ω), ω ∈ Ω, then there exists a Feller invariant probability measure µ for φ. More
precisely we have the following corollary.
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Corollary 9. If a càdlàg time and space continuous RDS φ has an invariant compact random
set, then there exists a feller invariant probability measure µ for φ.

4.3 Random Dynamical systems generated by the SNSE on
a rotating unit sphere

Having established the well-posedness in the earlier chapter, we are in a position to define an
RDS φ corresponding to the problem (3.61) in H . But first, we need to determine a sample
(canonical) probability space for which the dynamics of the driving noise remains stationary.

4.3.1 Some analytic facts
Recall that X = L4(S2) ∩ H denote the Banach space endowed with the norm

|x|X = |x|H + |x|L4(S2).
Recall Assumption 1 last chapter, namely, the space K ⊂ H ∩ L4 is a Hilbert space such that
for any δ ∈ (0, 1/2),

A−δ : K → H ∩ L4(S2) is γ-radonifying. (4.5)
This assumption is satisfied if K = D(As) for some s > 0.

Remark. Under the above assumption the space K can be taken as the RKHS of the cylindrical
Wiener process W (t) on H ∩ L4.

Let (Ω,F,P) be a complete probability space, where Ω = D(R,E) of càdlàg functions defined
on R take value in E with the following Skorohod metric

d(l1, l2) =
∞∑
i=1

(1 ∧ d◦
i (l1, l2)) ∀ l1, l2 ∈ D,

where li1(t) := gi(t)l1(t) and li2(t) := gi(t)l2(t) with

gi(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1, if |t| ≤ i − 1
i − t, if i − 1 ≤ |t| ≤ i
0, if |t| ≤ i
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d◦
i (li1, li2) = infλ∈Λ

(
sup

−i≤s<t≤i
| log λ(t) − λ(s)

t − s | ∨ sup
−i≤t≤i

|l1(t) − l2(λ(t))|
)
,

where Λ denotes the set of strictly increasing, continuous function λ(t) from R to itself with
λ(0) = 0. This skorohod space is a complete separable metric space which is taken as the
canonical sample space. Let F be the Borel σ -algebra of the Polish space (D(R,X), d). For
every t ∈ R we have the evaluation map Lt : D(R,X) → R denote by Lt(ω) = ω(t). Then we
have F = σ (Lt , t ∈ R), that is, F is the smallest σ -algebra generated by the family of maps
{Lt : t ∈ R}. Let P be the unique probability measure which makes the canonical process a
two-sided Lévy process (see definition in Chapter 3) with paths in D(R; E), that is, ω(t) = Lt(ω).
Define the shift

(θtω)(·) = ω(t + ·) − ω(t) t ∈ R, ω ∈ Ω.
Then the map (t, ω) → θt(ω) is continuous and measurable [7] and the (Lévy) probability
measure P is θ invariant, that is, P(θ−1t (T)) = P(T) for all T ∈ F. This flow is an ergodic
dynamical system with respect to P. Thus (Ω,F,P, (θ )t∈R) is a metric DS.

4.3.2 Ornstein-Uhlenbeck process
In the following subsections we are concerned with the linear evolutionary Stokes equations.
In particular the notations H and A are as defined in subsection 3.1.3. The space X is defined
in subsection 4.3.1.
Recall, the equation ⎧⎨

⎩
u̇(t) + Au(t) = f (t), t ∈ [0,T],
u(0) = u0.

If A generates a C0-semigroup in a Banach space E and f : [0,T] → E is such a function that
∫ T

0
|f (t)|E dt < ∞,

then the solution is given by

u(t) = e−tAu0 +
∫ t

0
e−(t−s)Af (s)ds.

In particular, we have

Proposition 4.3.1. Let L be a Lévy process taking value in E , such that for any T > 0
∫ T

0
|L(t)|E dt < ∞ .
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Then the solution of the differential equation
V̇ (t) + αV (t) = L(t), V (0) = 0, α > 0

is given by

V (t) =
∫ t

0
e−(t−s)AL(s)ds.

4.3.2.1 Stochastic convolution and integrating by parts

Here we quote a useful integration by part formula from [114] which allows us to attain the
desired regularity for which the RDS φ exist.
Consider the following Ornstein-Uhlenbeck process generated by the Stokes operator on S2,

zt =
∫ t

0
e−A(t−s)GdL(s) =

∞∑
l=1

zlel,

where {el : l = 1, · · · } is the complete orthonormal system of eigenfunctions of A in H and

zt(t) =
∫ t

0
e−λl(t−s)σldLl(s), (4.6)

where λl are the eigenvalues of the Stokes operator A. By the Itô product formula, see
Theorem 4.4.13 of [4] for any l ≥ 1, one has that

Ll(t) =
∫ t

0
λle−λl(t−s)Ll(s)ds +

∫ t

0
e−λl(t−s)dLl(s) +

∫ t

0
λle−λl(t−s)∆Ll(s)ds,

where ∆Ll(s) = Ll(s) − Ll(s−). Since Ll(t) is a β stable process, ∆Ll(s) = 0 a.e. for s ∈ [0, t] and
so we have ∫ t

0
λle−λl(t−s)∆Ll(s)ds = 0.

Therefore,
zl(t) = σlLl(t) −

∫ t

0
λle−λl(t−s)σlLl(s)ds.

Hence, if we assume that σl = 0 for l > m for a certain finite m > 1 then
z(t) = L(t) − Y (t),

where
Y (t) =

∫ t

0
Ae−A(t−s)L(s)ds.
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In this case we clearly have
Y (t) ∈ H a.s. (t ≥ 0).

4.3.2.2 Regularity of Shifting flow
To prove our stochastic Navier-Stokes system generates a RDS, we will transform it into
a random PDE in X with aid of the integration by part technique introduced earlier. We
need to give a meaning to the Ornstein-Uhlenbeck process in the metric dynamical system
(Ω,F,P, {θt}t∈R) given by

z(θtω) := ẑ(t) =
∫ t

−∞
Â1+δe−(t−r)Â(ω̃(t) − ω̃(r))dr, t ∈ R.

Our goal now is to show ẑ(t) is a well defined element in X := L4(S2) ∩ H for a.e. ω. But first,
we need the following couple of results, which can be viewed as generalisation of Theorem
4.1 and Theorem 4.4 in [23] to the case where the Ornstein Uhlenbeck generator is Â + αI in
place of A, where

Â = νA + C, D(Â) = D(A), A = −P(∆ + 2Ric).
Recall that

|Â1+δe−t(Â+αI)|L(X,X) ≤ Ct−1−δe−(µ+α)t , t > 0. (4.7)

Proposition 4.3.2. Assume β ∈ (1, 2), p ∈ (0, β) and
∞∑
l=1

|σl|β λβ/2
l < ∞ .

Then
E
∫ t

−∞
|Âe−(t−r)Â(ω̃(t) − ω̃(r))|pXdr < ∞. (4.8)

Moreover, for P almost every ω̃ ∈ D(R,X), t ∈ R the function

ẑ(t) = ẑ(ω̃)(t) =
∫ t

−∞
Âe−(t−r)Â(ω̃(t) − ω̃(r))dr, t ∈ R (4.9)

is well defined and cádlág in X. Furthermore, for any κ > 0 such that κp > 1 there exists a
random variable C depending on β, p, σ , δ such that

|ẑ(ω̃)(t)|X ≤ C(β, p, σ, δ, ω̃)(1 + |t|κ). (4.10)
Proof. Part I We will show first that the Lévy process L is is càdlàg in X and

E sup
t≤T

|L(s)|pX < ∞ . (4.11)
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By Lemma 3.2.4 the process L is cádlág in V , hence in L2 (S2) and finally in X. It remains to
show (4.11). Recall Lemma 3.2.1, that is,

E sup
t≤T

|AδL(t)|p ≤ C(β, p)
(∑

l≥1
|σl|βλβδl

) p
β

t pβ < ∞. (4.12)

Putting δ = 0, we have,

E sup
t≤T

|L(t)|p ≤ C(β, p)
(∑

l≥1
|σl|β

) p
β

t pβ < ∞, (4.13)

and putting δ = 1
2 we have,

E sup
t≤T

|A 1
2 L(t)|p ≤ C(β, p)

(∑
l≥1

|σl|βλβ/2
l

) p
β

t pβ < ∞. (4.14)

So
E sup

t≤T
|L(s)|pX ≤ cE sup

t≤T
|L(s)|p + cE sup

t≤T
|L(s)|pL4(S2)

≤ cE sup
t≤T

|L(s)|p + CE sup
t≤T

(
|L(s)| p2 |L(s)| p2V

)
via Ladyzhenskaya inequality

≤ cE sup
t≤T

|L(s)|p + CE sup
t≤T

|L(s)|pV via Lemma 3.23

= C(β, p)
(∑

l≥1
|σl|β

)p/β
s p

β + C(β, p)
(∑

l≥1
|σl|βλβ/2

l

) p
β

s p
β

≤ C(β, p)
(∑

l≥1
|σl|βλβ/2

l

) p
β

s p
β .

Part II In what follows we use the fact that ω̃(t) = L(t) P-a.s. Using the change of
variables s = t − r, we obtain

E
∫ t

−∞
|Âe−(t−r)Â(ω̃(t) − ω̃(r))|pdr =

∫ ∞

0
E|Âe−sÂ(ω̃(t) − ω̃(t − s))|pXds

=
∫ ∞

0
E|Âe−sÂω̃(s)|pXds.
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Using (4.7) with γ = α + µ we have∫ ∞

0
E|Âe−sÂω̃(s)|pXds ≤ C

∫ ∞

0
e−pγs

sp E|Aδω̃(s)|pXds

≤ C
∫ ∞

0
e−pγs

sp C(β, p)s p
β (∑

l≥1
|σl|βλβδl ) pβ ds < ∞,

since p − p
β < 1 and we infer that ẑ(t) is well defined in X P-a.s. using the same arguments as

in the proof of (4.11) above.
We will prove (4.10). Applying Lemma 3.5.9, with the Banach space B = X and κ such that
κp > 1 we obtain

|ẑ(ω̃)(t)|X ≤ C(β, p, σ, δ, κ, ω̃)(1 + |t|κ), (4.15)
and (4.10) follows.
Part III One has to check ẑ is right continuous with left limit in X. To this end note first that

ẑ(t) =
∫ t

−∞
Âe−(t−s)Â (ω(t) − ω(s))ds

=
(

Â
∫ ∞

0
e−sÂds

)
ω(t) −

∫ t

−∞
Âe−(t−s)Âω(s)ds

= ω(t) −
∫ t

−∞
Âe−(t−s)Âω(s)ds,

since Â is invertible. The function ω is càdlàg in X by assumption. We will show that the
function

F (t, ω) =
∫ t

−∞
Âe−(t−s)Âω(s)ds

is continuous in X for P-a.e. ω. Indeed, for s, t ∈ R such r < t we have
∫ t

−∞
Âe−(t−s)Âω(s)ds =

∫ r

−∞
Âe−(t−s)Âω(s)ds +

∫ t

r
Âe−(t−s)Âω(s)ds

= Âe−(t−r)Â
∫ r

−∞
e−(r−s)Âω(s)ds +

∫ t

r
Âe−(t−s)Âω(s)ds

= Âe−(t−r)Âh + I(t) .
Since the semigroup e−sÂ is analytic, we find that the function t → Âe−(t−r)Âh is continuous
for t > r. Let us consider I(t). By Sobolev embeddings we have a continuous embedding
H1,2 ⊂ W 1

4 ,4. Therefore for δ small enough the function t → Aδω(t) is locally bounded in L4

for a.e. ω. Then
I(t) =

∫ t

r
Â1−δe−(t−s)ÂÂδω(s)ds

is continuous for t > r, again by standard properties of analytic semigroups.
!
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Theorem 4.3.3. Under the assumption of Proposition 4.3.2, for P-a.e. ω ∈ D(R,X),
ẑ(θsω)(t) = ẑ(ω)(t + s), t, s ∈ R.

Proof. The proofs of the first three parts follows from closely from Theorem 4.8 and Propo-
sition 8.4 in [23], see also Theorem 9 in [63]. For the last part, since (θsω)(r) = ω(r + s) − ω(s),
r ∈ R, we have

ẑ(θsω)(t) =
∫ t

−∞
Ae−(t−r)A[θsω(t) − θsω(r)]dr

=
∫ t

−∞
Âe−(t−r)A[ω(t + s) − ω(r + s)]dr

=
∫ t+s

−∞
Âe−(t+s−r′)A[ω(t + s) − ω(r′)]dr′ = ẑ(ω)(t + s).

!

Now, put (τsζ)(t) = ζ(t + s), t, s ∈ R. Therefore τs is linear, bounded map from D(R,X) into
D(R,X). Moreover, the family (τs)s∈R is a C0 group on D(R,X). Hence the shifting property
could be re-expressed as

Corollary 10. For P-a.e. ω ∈ D(R,X) For s ∈ R, τs ◦ ẑ = ẑ ◦ θs , that is
τs(ẑ(ω)) = ẑ(θs(ω)), ω ∈ D(R; X).

Proposition 4.3.4. The process

zα(t) =
∫ t

−∞
e−(t−s)(Â+αI)dL(s),

where the integral is intepreted in the sense of [23] is well defined and is identified as a
solution to the equation

dzα(t) + (Â + αI)zαdt = dL(t), t ∈ R.
The process zα, t ∈ R is a stationary OU process.
We define

zα(ω) := ẑ(Â + αI ;ω) ∈ D(R,X),
i.e. for any t ≥ 0,

zα(ω)(t) :=
∫ t

−∞
(Â + αI)e−(t−r)(Â+αI)(ω(t) − ω(s))ds
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By Proposition 4.3.1,
d+

dt zα(ω)(t) + (Â + αI)
∫ t

−∞
(Â + αI)1+δe−(t−r)(Â+αI)(ω(t) − ω(s))ds = L(t).

Therefore zα(t) satisfies
d+

dt zα(t) = (Â + αI)zα = ω̇(t), t ∈ R. (4.16)
It follows from Theorem 4.3.3 that

zα(θsω)(t) = zα(ω)(t + s), ω ∈ D(R,X), t, s ∈ R.
Similar to our definition of Lévy process Lt , i.e. Lt(ω) := ω(t), we can view the ODE as
a definition of zα(t) on (Ω,F,P), equation (4.16) suggests that this process is an Ornstein
Uhblenck process.
Now we have enough tools to prove the cocycle property of RDS, and this allows us to prove
(φ, θ ) is an RDS. The proof follows same lines as Theorem 6.15 in [18].

4.3.3 Random dynamical system generated by the SNSE on a sphere with
Lévy noise

Let us fix α ≥ 0 and put Ω = Ω(E).
We define a map φ = φα : R × Ω × H → H by

(t, ω, x) 12 v(t, ẑα(ω))(x − ẑα(ω)(0)) + ẑα(ω)(t).
In what follows, write z = zα for simplicity.
Put in another way,

φ = φα(t, ω)x := v(t, zα(ω))(x − zα(ω)(0)) + zα(ω)(t)
= u(t, ω;x) ∀ t ∈ T, ω ∈ Ω, x ∈ H,

where u(·;ω, u0) is the solution of the integral equation corresponding to given ω ∈ Ω, u0 ∈ H
and φ satisfies the definition of RDS.
Since φ(t) = φ(t, θt(ω))v0 and v(0) = v0. Then φ(0, ω) = I. It is clear that φ(0, ω) = I. Because
z(ω) ∈ D(R; X), z(ω)(0) is a well-defined element of H and hence φ is well defined. Furthermore,
we have the first main result of this chapter.

Theorem 4.3.5. (φ, θ ) is a random dynamical system.
To prove the claim, one simply check the definition of a random dynamical system (see
subsection 4.2.2).
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Proof. First, we check Measurability. Suppose u0 ∈ V and t ∈ T is fixed, the map ω 12
φ(t, ω)u0 ∈ H is measurable because the solution u(t, ω;u0) is constructed as the (poinwise in
ω) limit of sucessive approximation of the contraction, which is measurable being explicitly
defined in term of measurable objects. Finally, if u0 ∈ H , then u(t, ω;u0) is the limit of u(t, ω;u0n)
with u0n ∈ V . The required measurability is assured.
Next, we check Continuous dependence on initial data.
The proof follows the similar line of the proof of uniqueness in subsubsection 3.4.2.
Third, we check Càdlàg property of φ(t, ω). This turns out to be an easy task: The càdlàg
property of φtu0 is clear from the proof of existence and uniqueness of the solution u.
Lastly, we will check the cocycle property of φ, namely, for any x ∈ H , one has to check,

φ(t + s, ω)x = φ(t, θsω)φ(s, ω), t, s ∈ R. (4.17)
From the definition of φ, noting from the cocycle property of z, ẑ(θsω)(t) = ẑ(ω)(t+s), z(ω)(s) =
z(θsω)(0) for all s ∈ R, we have for all t, s ∈ R,

φ(t + s, ω)x = v(t + s, z(ω)(t + s))(x − z(ω)(0)) + z(ω)(t + s),

φ(t, θsω)φ(s, ω)x = v(t, z(θsω)(t))(x − z(ω)(0)) + z(ω)(s) − z(θsω)(0) + z(θsω)(t)
= v(t, z(θsω)(t))(v(s, z(ω))(s))(x − z(ω)(0)) + z(θsω)(t).

In view of (4.3.3), to prove (4.17), we need to prove
v(t + s, z(ω)(t + s))(x − z(ω)(0)) = v(t, z(θsω)(t))(v(s, z(ω)(0))).

Now, fix s ∈ R, define v1, v2 by
v1(t) = v(t + s, z(ω)(t + s))(x − z(ω)(0)) t ∈ R,
v2(t) = v(t, z(θsω)(t))(v(s, z(ω)(s))(x − z(ω)(0))), t ∈ R.

Because v(0, z(θsω)(0))(x − z(θsω)(0)) = x − z(θsω)(0), one infer that
v1(0) = v(s, z(ω)(s))(x − z(ω)(0))

= v(0, z(θsω)(0))(v(s, z(ω)(s))(x − z(ω)(0))) = v2(0).
Since R ∋ t 12 v(t, z(ω)) is a solution to⎧⎨

⎩
dv
dt+ = −νAv − B(v) − B(v, z) − B(z, v) − B(z) + αz + f ,
v(0) = v0.

162



On the other hand, in view of our earlier existence uniqueness results, the fact v takes value
in D(A) implies that v(t) is differentiable for almost every t . We have

v ′(t) = −νAv1(t + s, z(ω)(t + s)) − B(v1(t + s, z(ω)(t + s)) + z(ω)(t + s) + αz(ω)(t + s) + f
= −νAv1(t, z(ω)) − B(v1(t, z(ω)) + z(ω)(t + s)) + αz(ω)(t + s) + f .

On the other hand for v2,
dv(t, z(θsω)(t))

dt+ = −νAv(t, z(θsω)(t)) − B(v(t, z(θsω)(t))) + z(θsω)(t) + αz(θsω)(t) + f .
Therefore, v1, v2 solve respectively⎧⎨

⎩
v ′1(t) = −νAv ′1 − B(v ′1(t) + z(ω)(t + s)) + αz(ω)(t + s) + f ,
v1(0) = v(z(ω))(s)(x − z(ω)(0)),
⎧⎨
⎩
v ′2(t) = −νAv ′2 − B(v ′2(t) + z(θsω)(t)) + αz(θsω)(t) + f ,
v1(0) = v(z(ω))(s)(x − z(ω)(0)).

By cocycle property of z, z(θsω)(t) = z(ω)(t + s) for t ∈ R. !

Therefore, v1, v2 are solutions to (3.75) with the same initial data v(s, z(ω)(s))(x − z(ω)(0)) at
t = 0. Then it follows from the uniqueness of solution to (3.75) that v1 = v2, t ∈ R.

4.3.4 Existence of random attractors
We have the Poincare inequalities

|u|2V ≥ λ1|u|2, ∀ u ∈ V , (4.18)
|Au|2 ≥ λ1|u|2, ∀ u ∈ D(A). (4.19)

Lemma 4.3.6. Suppose that v is a solution to problem (3.75) on the time interval [t0,∞) with
z ∈ L4loc(R,L4(S2)) ∩ L2loc(R,V ′) and t0 ≥ 0. Then, for any t ≥ τ ≥ t0, one has

|v(t)|2 ≤ |v(τ)|2e∫ tτ γ(s)ds +
∫ t

t0
e∫ ts γ(ξ)dξ2p(s)ds, (4.20)

where
p(t) = c|f |2 + cα|z|2 + δ|z|2

m∑
l=1

|zl(t)|, (4.21)

163



γ(t) = −λ1
2 + 4β

m∑
l=1

|zl(t)| (4.22)

for all t0 ≤ τ ≤ t and c depends only on λ1

Proof. The proof will be provided shortly. !

The main lines of proving the existence of random attractors follow from classical lines of
proving Global attractors by finding compact absorbing sets. However, as pointed out in the
paper [34], the analysis of Navier-Stokes equations with additive noise in our case requires
some non-trivial consideration. In particular, a critical question arised when analyzing the
estimate d+

dt |v(t)|2, the usual estimates for the nonlinear term b(v(t), z(t), v(t)) yields a term
|v(t)|2|z(t)|44, so we were not able to deduce any bound in H for |v(t)|2 under the classical lines
(see for instance section 6 in [14]). Nevertheless, in light of the method developed in [34], via
the usual change of variable and by writing the noise and the Ornstein-Uhlenbeck process as
an infinite sequence of 1D processes, we are able to show there exist random attractors to our
system 1.27 as well. In what proceed we will detail our proof.
Let H , A : D(A) ⊂ H → H , V = D(A1/2) = D(Â1/2) and B(u, v) : V × V → V ′, Cu be spaces and
operators introduced in the previous section. Suppose that there exists a constant cB > 0 such
that

⟨B(u, v), w⟩ = |b(u, v,w)| ≤ cB|u|1/2|u|1/2
V |v|1/2|v|1/2

V |w|V , ∀ u, v, z ∈ V , (4.23)

⟨B(u, v), v⟩ ≤ cB|u|1/2|Au|1/2|v|V |z|
for all u ∈ D(A), v ∈ V and z ∈ H. Moreover, let f ∈ H , e1, · · · , em ∈ H be given, {σl} is a
sequence of real numbers. Consider 4.1 again,

du(t) = [−Au(t) − B(u(t), u(t)) + Cu(t) + f ]dt +
m∑
l=1

σldLl(t)el, u(0) = u0.

As in last chapter, assume that el are the eigenfunctions of the stoke operator A, 1 ≤ l ≤ m,
there exists δ > 0 such that

|⟨B(u, el), u⟩| ≤ δ|u|2, u ∈ V , l = 1, · · · ,m. (4.24)

Remark. In bounded domain or in S2, one has

⟨B(u, el), u⟩ =
3∑

i,j=1

∫
S2
ui ∂(el)j

∂xi ujdx. (4.25)
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In this case assumption (4.24) is satisfied when el are Lipschitz continuous in S2. Put L(t) =∑m
l=1 elLl(t).

4.3.4.1 Stochastic flow
Consider the abstract SNSE

du + [Au + B(u) + Cu]dt = fdt + GdL(t),
and the Ornstein-Uhlenback equation

dz + (Â + αI)zdt = GdL(t).
From the discussion from the earlier subsubsection, it is clear that z(t) is a stationary ergodic
solution with continuous trajectories take value in D(A). So we can transform the SNSE to a
random PDE. The main advantage is that we can solve the equation ω-wise due to the absence
of the stochastic integral.
We now use the change of variable v(t) = u(t) − z(t). Then, by subtracting the Ornstein-
Uhlenback equation from the abstract SNSE, we find that v satisfies the following equation

dv
dt+ = −νAv(t) − Cv(t) − B(u, u) + f + αz. (4.26)

Now recall Theorem 3.4.5 from last chapter.

Theorem 4.3.7. Assume that equation (3.190) is satisfied. Then for P-a.s. ω ∈ Ω, there hold
• For all t0 ∈ R and all v0 ∈ H , there exists a unique solution v ∈ C([t0,+∞]; H) ∩

L2loc([t0,+∞); V ) of equation (4.26) with initial value v0.
• If v0 ∈ V , then the solution belongs to C([t0,+∞); V ) ∩ L2loc([t0,+∞); D(A)).
• hence, for every ε > 0, v(t) ∈ C([t0 + ε,+∞); V ) ∩ L2loc([t0 + ε,+∞); D(A)).
• Denoting the solution by v(t, t0;ω, v0), then the map v0 12 v(t, t0;ω, v0) is continuous

for all t ≥ t0, v0 ∈ H .
Now Let us define the transition semigroup for the flow φ as

Ptf (x) = Ef (φ(t, x)).

Corollary 11. It follow from Theorem 3.4.5 the transition semigroup for the Markov RDS φ
has Feller property in H . That is, Pt : Cb(H) → Cb(H)
Having the map v0 12 v(t, t0;ω, v0), where v(t, t0;ω, v0) is the solution to (4.26) with v(t0) = v0,
we can now define a stochastic flow φ(t, ω) in H by setting

φ(t, ω)u0 = v(t, 0;ω, u0 − zα(ω)(0)) + zα(ω)(t).
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4.3.4.2 Absorbing in H at time t = −1

In what proceed, assume ω ∈ Ω is fixed; the results will hold P a.s.. Suppose t0 ≤ −1 and
u0 ∈ H be given, and let v be the solution of equation (4.26) for t ≥ t0, with v(t0) = u0 − z(t0, ω)
(which was denoted above by v(t, 0;ω, u0 − z(0, ω))). Using the well known identity 1

2∂t|v(t)|2 =
(v(t), v(t)), and the assumption ⟨B(u, v), v⟩ = 0 and the antisymmetric term (Cv, v) = 0 we have

1
2
d+

dt |v|2 = −ν(Av, v) − ⟨B(u, z), u⟩ + (αz, v) + ⟨f , v⟩ (4.27)
≤ −ν|v|2V − ⟨B(u, z), u⟩ + α|z||v| + |f ||v|. (4.28)

By the definition of z and assumptions (3.190),

|⟨B(u, z), u⟩| =
∣∣∣∣∣
m∑
l=1

⟨B(u, el), u⟩el
∣∣∣∣∣ ≤ δ|u|2

m∑
l=1

|zl|

≤ 2δ|v|2
m∑
l=1

|zl| + 2δ|z|2
m∑
l=1

|zl|.

and the inequalities
(αz, v) = cα|z|2 + c′|v|2,

⟨f , v⟩ ≤ c|f |2 + c′|v|2.
For simplicity we take ν = 1. Then via Young inequality, one can show that there exists c, c′ > 0
depending only on λ1 such that

1
2
d+

dt |v|2 + 1
2 |v|2V ≤

(
−λ1

4 + 2δ
m∑
l=1

|zl|
)

|v|2 + c|f |2 + cα|z|2 + 2c|z|2V + 2δ|z|2
m∑
l=1

|zl|.

Let γ(t), and p(t) are defined as:

p(t) = c|f |2 + cα|z|2 + δ|z|2
m∑
k=1

|zk(t)|,

γ(t) = −λ1
2 + 4δ

m∑
l=1

|zl(s)|,

we have
1
2
d+

dt |v|2 + 1
2 |v|2V ≤ 1

2γ(t)|v|2 + p(t), (4.29)
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d+

dt |v(t)|2 ≤ γ(t)|v(t)|2 + 2p(t).
Invoking Gronwall Lemma over the interval [a,∞), we have (4.20).

Lemma 4.3.8. There exists a random radius r1(ω) > 0 such that for all ρ > 0 there exists (a
deterministic) t̄ ≤ −1 such that the following holds P-a.s. For all t0 ≤ t̄ and for all u0 ∈ H with
|u0| ≤ ρ, the solution v(t, t0;ω, u0 − z(s)) of equation (3.75) over [t0,∞] with v(t0) = u0 − zα(t0)
satisfies the inequality

|v(−1, t0;ω, u0 − zα(t0, ω))|2 ≤ r2
1(ω).

Proof. Apply Lemma 4.3.6 with t = −1, τ = t0, we have

|v(−1)|2 ≤ |v(t0)|2e
∫ −1
t0 γ(ξ)dξ +

∫ −1

t0
e∫ ts γ(ξ)dξ2p(s)ds

≤ 2e
∫ −1
t0 γ(ξ)dξ|u0|2 + 2e

∫ −1
t0 γ(ξ)dξ|z(t0)|2 +

∫ −1

−∞
e∫ ts γ(ξ)dξ2p(s)ds. (4.30)

Put
r2

1(ω) = 2 + 2 sup
t0≤−1

e
∫ −1
t0 γ(ξ)dξ|z(t0)|2 +

∫ −1

−∞
e∫ ts γ(ξ)dξ2p(s)ds (4.31)

which is finite P a.s. due to (3.185) and (3.186).
So, given ρ > 0, choose t̄ such that

e
∫ −1
t0 γ(ξ)dξρ2 ≤ 1

for all t0 ≤ t̄ . The claim then follows from (4.20). We remark that t0 depending on ω. !

Taking t ∈ [−1, 0] and τ = −1 in (4.20) we have

|v(t)|2 ≤ |v(−1)|2e∫ t−1 γ(ξ)dξ +
∫ t

−1
e∫ ts γ(ξ)dξ2p(s)ds.

Let us now come back to (4.29):
d+

dt |v|2 + |v|2V ≤ γ(t)|v|2 + 2p(t).
Integrate over [−1, 0],

|v(0)|2 − |v(−1)|2 +
∫ 0

−1
|v(s)|2Vds ≤

(∫ 0

−1
γ(ξ)dξ

)(
sup

−1≤t≤0
|v(t)|2

)
+
∫ 0

−1
2p(s)ds.
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Therefore,
∫ 0

−1
|v(s)|2Vds ≤ |v(−1)|2 +

(∫ 0

−1
γ(ξ)dξ

)(
sup

−1≤t≤0
|v(t)|2

)
+
∫ 0

−1
2p(s)ds.

Therefore, from above lemma we deduce

Lemma 4.3.9. There exists two random variables c1(ω) and c2(ω) depending on λ1, e1, · · · , em
and |f | such that for all ρ > 0 there exists t̄(ω) ≤ −1 such that the following holds P a.s.
∀ t0 ≤ t̄ and for all u0 ∈ H with |u0| ≤ ρ, the solution v(t, ω; t0, u0 − z(t0, ω)) of equation (4.26)
over [t0,∞] with v(t0) = u0 − z(t0) satisfies

|v(t, ω; t0, u0 − z(t0, ω))|2 ≤ c1(ω) ∀ t ∈ [−1, 0],

∫ 0

−1
|v(s, ω; t0, u0 − z(t0, ω))|2Vds ≤ c2(ω).

Proof. Put
c1(ω) = e∫ t−1 γ(ξ)dξr2

1(ω) +
∫ t

−1
e∫ ts γ(ξ)dξp(s)ds,

c2(ω) = r2
1(ω)

(
1 +

∫ 0

−1
γ(ξ)dξ

)
+
∫ 0

−1
2p(s)ds,

with r1(ω) as in the previous lemma. Then, given ρ > 0, it suffices to choose t(ω) as in the
proof of that previous lemma. !

4.3.4.3 Absorption in V at t = 0

From (3.75) we have (by multiplying Av left and right and noting (vt,Av) = 1
2
d+
dt |v|2V ), using

inequality (4.23), and use the Young inequality with ab =
√

1
ea

√eb, p = 2

ab ≤ a2

2 + b2

2 ,
With the choice of e = ν

4 , one has that
⟨f ,Av⟩ ≤ 2

ν |f |2 + ν
8 |Av|2,

⟨αz,Av⟩ ≤ 2
ν |αz|2 + ν

8 |Av|2,
168



cB|u|1/2|Au|1/2|u|V |Av| ≤ 2νc2
B|u||Au||u|2V + ν

8 |Av|2,

1
2
d+

dt |v|2V = −ν|Av|2 − ⟨B(u, u),Av⟩ + ⟨f ,Av⟩ + ⟨αz,Av⟩
≤ −ν|Av|2 + cB|u|1/2|Au|1/2|u|V |Av| + |f ||Av| + |αz||Av|
≤ −5ν

8 |Av|2 + 2νc2
B|u||Au||u|2V + 2

ν (|f |2 + |αz|2)
With q(t) = 2

ν (|f |2 + |αz|2) and noticing |Au| ≤ |Av| + |Az|,
≤ −5ν

8 |Av|2 + 2νc2
B|u||Av||u|2V + 2νc2

B|u||Az||u|2V + q(t)
Apply Young inequality with e = ν/2 for the nonlinear term,

≤ −5ν
8 |Av|2 + ν

8 |Av|2 + 4νc4
B|u|2|u|2V |u|2V + 2c2

B|u||Az||u|2V + q(t)
≤ −ν

2 |Av|2 + 4νc4
B|u|2|u|2V |u|2V + 2c2

B|u||Az||u|2V + q(t)
≤ −ν

2 |Av|2 + 8νc4
B|u|2|u|2V |v|2V + 8νc4

B|u|2|u|2V |z|2V + 2νc2
B|u||Az||u|2V + q(t).

Temporarily disregard the |Av|2 term, we have
d+

dt |v|2V ≤ 16νc4
B|u|2|u|2V |v|2V + 16νc4

B|u|2|u|2V |z|2V + 4νc2
B|u||Az||u|2V + 2q(t).

Invoking Gronwall Lemma, we get for s ∈ [−1, 0],

|v(0)|2V ≤ e∫ 0
s 16νc4B|u(τ)|2|u(τ)|2Vds ×

(
|v(s)|2 +

∫ 0

s
(16νc4

B|u|2|u|2V |z|2V + 4νc4
B|u||Az||u|2V + 2q(t))dσ

)
.

Integrating in s over [−1, 0] we obtain

|v(0)|2V ≤
(∫ 0

−1
|v(τ)|2dτ +

∫ 0

−1
[16νc4

B|u|2|u|2V |z|2V + 4νc4
B|u||Az||u|2V + 2q(t)]dσ

)
e∫ 0

−1 16νc4B|u(τ)|2|u(τ)|2Vdτ.
(4.32)

Lemma 4.3.10. There exists a random radius r2(ω) > 0, depending only on λ1, e1, · · · , em and
f , such that for all ρ > 0 there exists (a deterministic) t̄ ≤ −1 such that the following holds P-
a.s. For all t0 ≤ t̄ and for all u0 ∈ H with |u0| ≤ ρ, the solution v(t, t0, ω;u0−z(t0, ω)) of equation
4.26 over [t0,∞] with v(t0) = u0 −zα(t0), put u(t, t0, ω;u0) = z(t, ω)+v(t, t0, ω;u0 −z(t0, ω)). Then

|u(0, ω; t0, u0 − zα(t0, ω))|2V ≤ r2
2(ω).
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Proof. In view of (4.32), we need to estimate the term.
∫ 0

−1
|u(s)|2|u(s)|2Vds.

Now using the fact u = v + z and |u|2 ≤ 2|v|2 + 2|z|2 = 2(|v|2 + |z|2)„ then the two terms can
be estimated as following.

∫ 0

−1
|u(s)|2|u(s)|2Vds

≤ sup
−1≤t≤0

|u(t)|2
∫ 0

−1
|u|2Vds

≤ sup
−1≤t≤0

2(|v(t)|2 + |z(t)|2)
(∫ 0

−1
2|v(τ)|2 + 2|z(τ)|2

)

≤ 2(c1(ω) + sup
−1≤t≤0

|z(t)|2)2(c2(ω) +
∫ 0

−1
|z(s)|2ds)

= 2c3(ω)2c4(ω),

∫ 0

−1
|u(s)||u(s)|2Vds

≤ sup
−1≤t≤0

|u(t)|
∫ 0

−1
|u(s)|2Vds

≤ (c1(ω) + sup
−1≤t≤0

|z(t)|)2c4(ω).
Hence, put

c3(ω) = c1(ω) + sup
−1≤t≤0

|z(t)|2,

c4(ω) = c2(ω) +
∫ 0

−1
|z(t)|2Vds,

c5(ω) = c1(ω)1/2 + sup
−1≤t≤0

|z(t)|.

Then, (4.32) becomes
|u(0)|2V ≤ 2|z(0)|2V + 2|v(0)|2V

≤ 2|z(0)|2V
+ 2

[
c2(ω) + 64c4

Bc3(ω)c4(ω) sup
−1≤t≤0

|z(t)| + 8c2
Bc5(ω)c4(ω) sup

−1≤t≤0
|Az(t)| +

∫ 0

−1
2q(s)ds

]
e64c4Bc3(ω)c4(ω)

=: r2
2(ω).

!

170



Hence there exists a random ball in V which absorbs the bounded sets of H. Since V is
compactly embedded in H , there exists a compact set K ⊂ H such that, for all bounded set
B ⊂ H there exists t̄ ≤ −1 such that φB ⊂ K P almost surely.

4.3.5 Existence of Feller Markov Invariant Measures
In this subsection, we prove the existence of random attractor implies the existence Feller
Markov invariant measures.

Theorem 4.3.11. The stochastic flow associated with the SNSE with additive Lévy noise (4.1)
has a compact random attractor, in the sense of Theorem 4.2.9. Moreover, the Markov
semigroup induced by the flow of H has an invariant measure ρ in the sense of Corollary
7. The associated flow-invariant Markov measure µ on H × Ω has the property that its
disintegration ω 12 µω is supported by the attractor.

Proof. Recall that, in the language of the stochastic flow associated with our SNSE (3.72),
u(0, ω; t0, u0) = φ(tn, θ−t0ω)u0 = v(0, ω; t0, u0 − z(s)) + z(t).

Then by the previous lemma, there exists a random ball in V which absorbs the bounded
sets of H . Since V is compactly embedded in H , there exists a compact set K ⊂ H such
that, for all bounded set B ⊂ H there exists t̄ ≤ −1 such that φB ⊂ K P a.s.. Defining
K(ω) := {u ∈ H : |u| ≤ r2(ω)}, we have proved the existence of a compact absorbing set. Then
by Theorem 4.2.9, there exists random attractor to (4.1). The existence of an invariant Markov
measure is a direct consequence of Corollary 9, provided we can show that the one-point
motions associated with the flow φ(t, ω) define a family of Markov processes. The proof of
this is analogous to the proof of Markov property of solutions to the (4.1) in the last chapter.
Nevertheless we repeat here as well. Let φs,t be defined as in earlier section. Let Fs,t be the
σ -algebra generated by L(r) − L(s) for all r ∈ [s, t], and let Ft = F0,t . Define the operators Pt
in the space of bounded measurable function over H as (Ptf )(u0) = Ef (φ(t)u0). To prove φ(t, ω)
defines a family of Markov processes. It suffices to prove

E[f (φ(t + s)x)|Ft ] = Ps(f )(φ(t)x),
for all 0 ≤ s ≤ t and all bounded continuous functions f over H , which implies that φ(t + s)x
is a Markov process with transition semigroup Pt . By uniqueness, the following holds

φ(t + s, ω)x = φ(s, ω)φ(t, ω)x
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over [t,∞] with Ft measurable initial condition φ(t, t)δ = δ. It suffices to prove
E[f (φt,t+sδ)|Ft ] = Ps(f )(δ) (4.33)

for for every H integrable, Ft r.v. δ.
Note, (4.33) not only holds for every f ∈ Cb(H), but also holds for φ = 1Γ, where Γ is an
arbitrary Borel set of H and consequently for all φ ∈ Bb(H). Without loss of generality, we
assume φ ∈ Cb(H). We know that, if δ = δi P a.s., then r.v. φ(t, t + s)δi is independent to Ft ,
since φ(t, t + s)δi is Ft,t+s measurable. Hence,

E(f (φ(t, t + s)δi)|Ft) = Ef (φ(t, t + s)δi) = Pt,t+sf (δi) = Psf (δi), P a.s. .
Since the coefficient of the equation for φ(t, t + s) are independent, one can see that the H r.v.
φt,t+s and φsx have the same law. If δ has the form

δ =
N∑
i=1

δi1Γi , (4.34)

where δ(i) ∈ H and Γ(i) ⊂ Ft is a partition of Ω, δi are elements of H . Then

φ(t, t + s)δi =
N∑
i=1

φ(t, t + s, δi)1Γi , P, a.s. .

Hence,

E(f (φ(t, t + s)δ)|Ft) =
N∑
i=1

E(f (φ(t, t + s)δi)1Γi |Ft) P a.s. .

Take into account the r.v. u(t, t+s)δi independent to Ft and 1Γi are Ft measurable, i = 1, · · · , l,
one deduces that

E[f (φ(t, t + s, δ))|Ft ] =
N∑
i=1

Psf (δi)1Γi = Psf (δ), P a.s.

and so (4.33) is proved. For a general δ there exists a sequence of δn for which (4.33) holds
converges to δ in L2(Ω; H) a.s., that is,

E|δ − δn|2 → 0.
By continuity of f one can pass in the identity (4.33), with δ replaced with δn, to the limit and
(4.33) holds if E|δ|2 < ∞. So φ(t, ω) defines a family of Markov processes.
The proof of existence of Markov measure is completed. !

Remark. Although the same results hold in β-stable Lévy case as in the Gaussian case (see
[34]), there is some difference between dealing with Brownian motion and Lévy motions. First,
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we need to consider càdlàg function in the Skorohod metric, which are different from the
continuous case in the metric under the compact-open topology. Second, one has to consider
solutions in the sense of Carthéodory and the right-hand derivatives.
Let u(t, x) be the unique solution to problem (3.72). Let us recall from last chapter that such
a unique solution exist for each x ∈ H. Let us define the transition operator Pt by a standard
formula. For f ∈ Cb(H), put

(Ptf )(x) = Ef (φ(t, x)), t ≥ 0, x ∈ X.
In view of Proposition 4.2.12, (Pt , t ≥ 0) is a family of Feller operators, i.e. Pt : Cb(H) → Cb(H)
and, for any f ∈ Cb(H) and x ∈ H , Ptf (x) → f (x) as t ↓ 0. Moreover, following the identical
lines of the proof of Theorem 4.3.11 in last subsection, one can prove that φ is a Markov RDS.
Invoke corollary 9, we deduce the existence of Feller invariant measure for our stochastic
Navier-Stokes equations (3.72) or (4.1).

Corollary 12. There exists an Feller Markov Invariant Measure for the SNSE (4.1)
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CHAPTER 5

Concluding Remarks

In this thesis, we extend the stochastic analysis initiated by Goldys et al. [14, 15] to the case
where noise is taken as a Lévy process of stable type. The approach we have taken is functional
analytic in the sense that the governing stochastic Navier-Stokes equation is interpreted as an
ordinary stochastic differential equation in a Hilbert space H .
The core parts of this thesis are chapters 2-4. Chapter 2 concerns with the stochastic analysis
of the Lévy process. We derive and prove a new version of stochastic Fubini theorem for
stochastic integral w.r.t. stable white noise. In Chapter 3, we prove, under suitable conditions
of the noise term that the existence and uniqueness of the solution in a fixed probability space
based on a priori estimates and some classical PDE arguments. Specifically, for the weak
solution, we use the classical Galerkin approximation and a compactness argument, and for
the strong solution, a fixed point argument is used. Then, in the second part of Chapter 3,
we deduce the existence of an invariant measure. The question of uniqueness of invariant
measure in our problem remained an open question. One must point out that this problem is
difficult and there have been no results for the Lévy noise of stable type, even the 2D bounded
domain case. A brief reason is that there is a trade-off between well-posedness of the SNSE
and the strong Feller property (see the publication [42]). Nevertheless, the ergodicity results
for the SNSE driven by Lévy noise with a non-degenerate Gaussian term is developed in [40].
The notion of asymptotic strong Feller developed by Hairer and Mattingly [61] may also be
helpful to tackle the question of ergodicity in our case.
In Chapter 4, a canonical sample space is identified for the SNSE for which the stochastic
Stokes equations remain stationary. Much effort is spent on finding the conditions to ensure a
well defined Ornstein-Uhlenbeck which possesses the shifting property. Then combined this
with the well-posedness result in Chapter 4, it is shown that the SNSE defines a RDS φ. In
the second part of Chapter 4, we establish the existence of a global (random) attractor which
carries a random invariant measure, under the assumption of finite dimensional noise. One
possible future direction from our work is to find the Hausdorff dimension of the random
attractor dim(A). The primary motivation for estimating Hausdorff dimension (for both PDE
and SPDE) is to show that, the dynamics of the system settles down to a finite-dimensional
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object in an asymptotic regime despite the phase space is infinite dimensional. Given this, the
dynamics of an infinite dimensional system reduces down to a finite dimensional object. Thus,
obtaining sharp estimates of this dimension is extremely useful in the study the asymptotic
regime of an infinite dimensional system, in the sense of allowing us to anticipate the minimum
number of degree of freedom that a reduced system must possess to capture the essential
feature of the asymptotic dynamics. The problem of estimating Hausdorff dimension is very
challenging since the random attractor is essentially a random set which is not uniformly
bounded. Flandoli and Crauel [35] developed a method to estimate Hausdorff dimensions
for the 2D NSE with bounded noise. To overcome the lack of uniform boundedness, a very
restrictive assumption has to be used. Moreover, the method does not work for the more
general form of equations. From a future perspective, it perhaps worthwhile to develop an
efficient reduction theory of SPDE, see the new book [27].
In addition to what was mentioned above. Here is the list of a possible future direction of this
study we have in mind.

The Numerical analysis of SNSE on the sphere with either Gaussian or Lévy noise
The numerical study of SNSE plays an important role in the real-world modelling of turbulent
fluids. Numerical methods have been developed for deterministic NSE on the sphere (see for
instance Fengler and Freeden [48]). The numerical implementation of SNSE on the sphere is
an open area of research even in the Gaussian case.

SNSE on the compact Riemannian manifold with Lévy noise.
The sphere is the simplest kind of Riemannian manifold, hence extending to a general Rie-
mannian manifold is a natural extension of the work done in this thesis. We believe studying
SNSE on manifold would be interesting from a pure mathematics point of view, especially for
researchers working at the cross-section of Differential Geometry, PDE theory and stochastic
analysis.
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Abbreviations and Notations

a.e. . . . . . . . . . . . Almost Everywhere
a.s. . . . . . . . . . . . . Almost Surely
Bb . . . . . . . . . . . . Bounded Borel Measurable function
Cb . . . . . . . . . . . . Bounded continuous function
C∞0 . . . . . . . . . . . . Infinite differentiable function with compact support
D(A) . . . . . . . . . . Domain of operator A
DS . . . . . . . . . . . . Dynamical System
i.i.d. . . . . . . . . . . . Independent Identically Distributed random variable
L . . . . . . . . . . . . . Probability Law
L(U,H) . . . . . . . The space of bounded linear operators from U into H
R(H,U) . . . . . . . The set of all γ-radonifying operators from H into U
RDS . . . . . . . . . . Random Dynamical System
ODE . . . . . . . . . . Ordinary Differential Equations
OU . . . . . . . . . . . OrnsteinUhlenbeck
PDE . . . . . . . . . . Partial Differential Equations
RKHS . . . . . . . . Reproducing Kernel Hilbert Space
r.v. . . . . . . . . . . . . Random variable
RCLL . . . . . . . . . Right continuous with left limit
SNSE . . . . . . . . . Stochastic Navier-Stokes Equations
SPDE . . . . . . . . . Stochastic Partial Differential Equations
spt . . . . . . . . . . . . support
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